示例#1
0
    def export(self, path):
        filePath = FilePath(path)
        filePath = filePath.join("%s.glsl" % self._name)
        filePath.ensureExists()

        str = self.getFieldFragmentShaderText()

        with filePath.edit() as fh:
            fh.write(str)

        return
示例#2
0
def run():
    shots = []
    scenes = []
    scenesDir = currentScenesDirectory()

    for scenePath in scenesDir.iter(join=True):
        if not scenePath.hasExt(SCENE_EXT):
            continue
        sceneDir = FilePath(scenePath.strip()).stripExt()
        xScene = parseXMLWithIncludes(scenePath)

        templatePath = scenesDir.join(scenesDir, xScene.attrib['template'])
        templateDir = templatePath.stripExt()
        xTemplate = Template(templatePath)

        scene = []

        for xPass in xTemplate:
            stitchIds = []
            uniforms = {}
            for xSection in xPass:
                baseDir = sceneDir
                if xSection.tag in ('global', 'shared'):
                    baseDir = templateDir
                shaderFile = baseDir.join(xSection.attrib['path']).abs()
                stitchIds.append(text.addFile(shaderFile))
                for xUniform in xSection:
                    name = xUniform.attrib['name']
                    values = [
                        float(x.strip())
                        for x in xUniform.attrib['value'].split(',')
                    ]
                    uniforms[text.addString(name)] = len(
                        values), floats.addFloats(values, name)

            programId = shaders.fromStitches(stitchIds)

            buffer = int(xPass.attrib.get('buffer', -1))
            outputs = int(xPass.attrib.get('outputs', 1))
            size = int(xPass.attrib.get('size', 0))
            width = int(xPass.attrib.get('width', size))
            height = int(xPass.attrib.get('height', size))
            factor = int(xPass.attrib.get('factor', 1))
            static = int(xPass.attrib.get('static', 0))
            is3d = int(xPass.attrib.get('is3d', 0))
            if buffer != -1:
                buffer = framebuffers.add(buffer, outputs, width, height,
                                          factor, static, is3d)

            i = 0
            key = 'input%s' % i
            inputs = []
            while key in xPass.attrib:
                v = xPass.attrib[key]
                if '.' in v:
                    a, b = v.split('.')
                else:
                    a, b = v, 0
                inputs.append((int(a), int(b)))
                i += 1
                key = 'input%s' % i

            scene.append(passes.add(programId, buffer, inputs, uniforms))

        sceneIndex = len(scenes)
        scenes.append(len(scene))
        scenes += scene

        for xShot in xScene:
            if xShot.attrib.get('enabled', 'True') == 'False':
                continue
            animations = {}
            for xChannel in xShot:
                uname = xChannel.attrib['name']
                n = uname
                x = 0
                if '.' in uname:
                    n, x = uname.rsplit('.', 1)
                    x = 'xyzw'.index(x)
                n = text.addString(n)
                if n not in animations:
                    animations[n] = []
                if not xChannel.text:
                    keyframes = []
                else:
                    keyframes = []
                    for i, v in enumerate(
                            float(v.strip())
                            for v in xChannel.text.split(',')):
                        j = i % 8
                        if j == 0 or j == 4 or j > 5:
                            continue
                        if j == 5:  # out tangent y
                            if v == float(
                                    'inf'
                            ):  # stepped tangents are implemented as out tangentY = positive infinity
                                v = 'FLT_MAX'
                        keyframes.append(v)
                    assert len(keyframes) / 4.0 == int(len(keyframes) /
                                                       4), len(keyframes)
                while len(animations[n]) <= x:
                    animations[n].append(None)
                assert animations[n][x] is None
                animations[n][x] = floats.addFloats(keyframes), len(keyframes)

            for channelStack in animations.values():
                # TODO we can not / do not check if the channelStack length matches the uniform dimensions inside the shader (e.g. are we sure we're not gonna call glUniform2f for a vec3?)
                assert None not in channelStack, 'Animation provided for multiple channels but there is one missing (Y if a vec3 or also Z if a vec4).'

            shots.append((float(xShot.attrib['start']),
                          float(xShot.attrib['end']), sceneIndex, animations))

    # sort shots by start time
    def _serializeShots(shots):
        shots.sort(key=lambda x: x[0])
        shotTimesStart = floats.addFloats(
            [x for shot in shots for x in (shot[0], shot[1])])
        yield '\n\n__forceinline int shotAtBeats(float beats, float& localBeats)\n{\n'
        if len(shots) == 1:
            yield '\tlocalBeats = beats - gFloatData[%s];\n' % shotTimesStart
            yield '\treturn 0;\n'
        else:
            yield '\tint shotTimeCursor = 0;\n'
            yield '\tdo\n\t{\n'
            yield '\t\tif(beats < gFloatData[shotTimeCursor * 2 + %s])\n\t\t{\n' % (
                shotTimesStart + 1)
            yield '\t\t\tlocalBeats = beats - gFloatData[shotTimeCursor * 2 + %s];\n' % shotTimesStart
            yield '\t\t\treturn shotTimeCursor;\n'
            yield '\t\t}\n'
            yield '\t}\n\twhile(++shotTimeCursor < %s);\n' % len(shots)
            yield '\treturn -1;\n'
        yield '}\n'

        global gShotScene
        gShotScene = ints.addInts([shot[2] for shot in shots])
        flatAnimationData = []
        animationDataPtrs = []
        for shot in shots:
            animationDataPtrs += [len(flatAnimationData), len(shot[3].keys())]
            global gAnimEntriesMax
            gAnimEntriesMax = max(gAnimEntriesMax, len(shot[3].keys()))
            for uniformStringId in shot[3]:
                animationData = shot[3][uniformStringId]
                flatAnimationData += [uniformStringId, len(animationData)]
                for pair in animationData:
                    flatAnimationData += pair
                flatAnimationData += [0] * (2 * (4 - len(animationData)))

        global gShotAnimationDataIds
        gShotAnimationDataIds = ints.addInts(animationDataPtrs)
        global gShotUniformData
        gShotUniformData = ints.addInts(flatAnimationData)

    def _serializeAll(scenes, shots):
        buffer = list(_serializeShots(shots))
        for serializable in (text, floats):
            for ln in serializable.serialize():
                yield ln
        buffer2 = []
        for serializable in (shaders, framebuffers, passes):
            buffer2 += list(serializable.serialize())
        global gScenePassIds
        gScenePassIds = ints.addInts(scenes)
        for ln in ints.serialize():
            yield ln
        for ln in buffer2:
            yield ln
        for ln in buffer:
            yield ln

    data = [''.join(_serializeAll(scenes, shots))]
    data.append(
        """\n\n__forceinline float evalCurve(const float* data, int numFloats, float beats)
{
\tif(numFloats == 4 || beats <= data[1]) // 1 key or evaluating before first frame
\t\treturn data[2];

\t// Find index of first key that has a bigger time than our current time
\t// if none, this will be the index of the last key.
\tint keyValueCount = numFloats;
\tint rightKeyIndex = 4;
\twhile (rightKeyIndex < keyValueCount - 4 && data[rightKeyIndex + 1] < beats)
\t\trightKeyIndex += 4;

\t// Clamp our sampling time to our range
\tfloat sampleTime = (beats > data[rightKeyIndex + 1]) ? data[rightKeyIndex + 1] : beats;

\t// Retrieve our spline points
\tfloat y0 = data[rightKeyIndex - 2];
\tfloat y1 = data[rightKeyIndex - 1]; 
\t// handle stepped tangents
\tif(y1 == FLT_MAX) return y0;
\tfloat y2 = data[rightKeyIndex];
\tfloat y3 = data[rightKeyIndex + 2];

\tfloat dy = y3 - y0;
\tfloat c0 = y1 + y2 - dy - dy;
\tfloat c1 = dy + dy + dy - y1 - y1 - y2;
\tfloat c2 = y1;
\tfloat c3 = y0;

\t// Determine factor
\tfloat dt = data[rightKeyIndex + 1] - data[rightKeyIndex - 3];
\tfloat t = (sampleTime - data[rightKeyIndex - 3]) / dt;

\treturn t * (t * (t * c0 + c1) + c2) + c3;
}

#define gAnimEntriesMax %s
#define gShotAnimationDataIds %s
#define gShotScene %s
#define gScenePassIds %s
#define gPassProgramsAndTargets %s
#define gShotUniformData %s
#define gFrameBufferData %s
#define gFrameBufferBlockSize %s
#define gProgramCount %s
""" % (gAnimEntriesMax, gShotAnimationDataIds, gShotScene, gScenePassIds,
       gPassProgramsAndTargets, gShotUniformData, gFrameBufferData,
       FrameBufferPool.BLOCK_SIZE, len(shaders.offsets)))

    dst = FilePath(__file__).abs().parent().parent().join(
        'Player', 'generated.hpp')
    with dst.edit() as fh:
        fh.write(''.join(data))