示例#1
0
def plot_reversal(res, start_days, end_days, figure_path):
    ax_args_copy = ax_args.copy()
    ax_args_copy.update({'ylim': [0, .6]})
    res = copy.copy(res)
    list_of_days = list(zip(start_days, end_days))
    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    reversal_res, stats_res = get_reversal_sig(start_end_day_res)
    filter.assign_composite(reversal_res, loop_keys=['day', 'odor_valence'])

    import seaborn as sns
    swarm_args = {
        'marker': '.',
        'size': 8,
        'facecolors': 'none',
        'alpha': .5,
        'palette': ['green', 'red'],
        'jitter': .1
    }

    mean_res = reduce.new_filter_reduce(reversal_res,
                                        filter_keys=['day', 'odor_valence'],
                                        reduce_key='Fraction')
    plot.plot_results(mean_res,
                      x_key='day_odor_valence',
                      y_key='Fraction',
                      error_key='Fraction_sem',
                      path=figure_path,
                      plot_function=plt.errorbar,
                      plot_args=error_args,
                      ax_args=ax_args_copy,
                      fig_size=(2, 1.5),
                      save=False)
    plt.plot([1.5, 1.5], plt.ylim(), '--', color='gray', linewidth=2)
    plot.plot_results(
        reversal_res,
        x_key='day_odor_valence',
        y_key='Fraction',
        path=figure_path,
        colors=['Green', 'Red', 'Green', 'Red'],
        # plot_function=plt.scatter, plot_args=scatter_args,
        plot_function=sns.stripplot,
        plot_args=swarm_args,
        ax_args=ax_args_copy,
        fig_size=(2, 1.5),
        reuse=True,
        save=True,
        legend=False)
    print(mean_res['day_odor_valence'])
    print(mean_res['Fraction'])

    from scipy.stats import wilcoxon
    ix_before_p = reversal_res['day_odor_valence'] == 'Lrn_CS+'
    ix_after_p = reversal_res['day_odor_valence'] == 'Rev_CS+'
    ix_before_m = reversal_res['day_odor_valence'] == 'Lrn_CS-'
    ix_after_m = reversal_res['day_odor_valence'] == 'Rev_CS-'
    stat_csp = wilcoxon(reversal_res['Fraction'][ix_before_p],
                        reversal_res['Fraction'][ix_after_p])
    stat_csm = wilcoxon(reversal_res['Fraction'][ix_before_m],
                        reversal_res['Fraction'][ix_after_m])
    print('CS+ to CS-: {}'.format(stat_csp))
    print('CS- to CS+: {}'.format(stat_csm))

    titles = ['', 'CS+', 'CS-', 'None']
    conditions = [['none-p', 'p-m', 'p-none', 'p-p'], ['p-m', 'p-none', 'p-p'],
                  ['m-m', 'm-none', 'm-p'], ['none-m', 'none-none', 'none-p']]
    labels = [['Added', 'Reversed', 'Lost', 'Retained'],
              ['Reversed', 'Lost',
               'Retained'], ['Retained', 'Lost', 'Reversed'],
              ['to CS-', 'Retained', 'to CS+']]
    for i, title in enumerate(titles):
        mean_stats = reduce.new_filter_reduce(stats_res,
                                              filter_keys='condition',
                                              reduce_key='Fraction')
        ax_args_copy.update({
            'ylim': [-.1, 1],
            'yticks': [0, .5, 1],
            'xticks': [0, 1, 2, 3],
            'xticklabels': labels[i]
        })
        plot.plot_results(mean_stats,
                          select_dict={'condition': conditions[i]},
                          x_key='condition',
                          y_key='Fraction',
                          loop_keys='mouse',
                          error_key='Fraction_sem',
                          sort=True,
                          path=figure_path,
                          colors=['Black'] * 10,
                          plot_function=plt.errorbar,
                          plot_args=error_args,
                          ax_args=ax_args_copy,
                          fig_size=(2, 1.5),
                          save=False)
        plt.title(title)

        plot.plot_results(stats_res,
                          select_dict={'condition': conditions[i]},
                          x_key='condition',
                          y_key='Fraction',
                          loop_keys='mouse',
                          sort=True,
                          path=figure_path,
                          colors=['Black'] * 10,
                          plot_function=plt.scatter,
                          plot_args=scatter_args,
                          ax_args=ax_args_copy,
                          fig_size=(2, 1.5),
                          legend=False,
                          save=True,
                          reuse=True)

        print(mean_stats['Fraction'])

    print(mean_res['Fraction'])
示例#2
0
def plot_overlap_odor(res,
                      start_days,
                      end_days,
                      delete_non_selective=False,
                      figure_path=None,
                      excitatory=True):
    ax_args_copy = overlap_ax_args.copy()
    res = copy.copy(res)
    res = _get_overlap_odor(res, delete_non_selective)
    list_of_days = list(zip(start_days, end_days))
    mice = np.unique(res['mouse'])
    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    start_end_day_res = reduce.new_filter_reduce(
        start_end_day_res,
        filter_keys=['mouse', 'day', 'condition'],
        reduce_key='Overlap')
    add_naive_learned(start_end_day_res, start_days, end_days)

    filter.assign_composite(start_end_day_res,
                            loop_keys=['condition', 'training_day'])
    odor_list = ['+:+', '-:-', '+:-']
    colors = ['Green', 'Red', 'Gray']
    name_str = '_E' if excitatory else '_I'
    ax_args_copy.update({'xlim': [-1, 6]})
    for i, odor in enumerate(odor_list):
        save_arg = False
        reuse_arg = True
        if i == 0:
            reuse_arg = False
        if i == len(odor_list) - 1:
            save_arg = True

        temp = filter.filter(start_end_day_res, {'condition': odor})
        name = ','.join([str(x) for x in start_days]) + '_' + ','.join(
            [str(x) for x in end_days])
        name += name_str
        plot.plot_results(temp,
                          x_key='condition_training_day',
                          y_key='Overlap',
                          loop_keys='mouse',
                          colors=[colors[i]] * len(mice),
                          path=figure_path,
                          plot_args=line_args,
                          ax_args=ax_args_copy,
                          save=save_arg,
                          reuse=reuse_arg,
                          name_str=name,
                          fig_size=(2, 1.5),
                          legend=False)

        b = filter.filter(temp, {'training_day': 'Learned'})
        print(odor)
        print(np.mean(b['Overlap']))

    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    add_naive_learned(start_end_day_res,
                      start_days,
                      end_days,
                      str1='0',
                      str2='1')
    start_end_day_res.pop('Overlap_sem', None)
    summary_res = reduce.new_filter_reduce(start_end_day_res,
                                           filter_keys='training_day',
                                           reduce_key='Overlap')

    ax_args_copy.update({
        'xlim': [-1, 2],
        'ylim': [0, .5],
        'yticks': [0, .1, .2, .3, .4, .5]
    })
    plot.plot_results(summary_res,
                      x_key='training_day',
                      y_key='Overlap',
                      path=figure_path,
                      plot_args=bar_args,
                      ax_args=ax_args_copy,
                      plot_function=plt.bar,
                      fig_size=(2, 1.5),
                      legend=False,
                      reuse=False,
                      save=False)
    plot.plot_results(summary_res,
                      x_key='training_day',
                      y_key='Overlap',
                      error_key='Overlap_sem',
                      path=figure_path,
                      plot_function=plt.errorbar,
                      plot_args=error_args,
                      ax_args=ax_args,
                      save=True,
                      reuse=True,
                      name_str=name_str)

    before_odor = filter.filter(start_end_day_res,
                                filter_dict={
                                    'training_day': '0',
                                    'condition': '+:+'
                                })
    after_odor = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': '1',
                                   'condition': '+:+'
                               })
    before_csp = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': '0',
                                   'condition': '+:-'
                               })
    after_csp = filter.filter(start_end_day_res,
                              filter_dict={
                                  'training_day': '1',
                                  'condition': '+:-'
                              })
    before_csm = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': '0',
                                   'condition': '-:-'
                               })
    after_csm = filter.filter(start_end_day_res,
                              filter_dict={
                                  'training_day': '1',
                                  'condition': '-:-'
                              })

    from scipy.stats import ranksums, wilcoxon, kruskal

    print('Before ++: {}'.format(np.mean(before_odor['Overlap'])))
    print('After ++: {}'.format(np.mean(after_odor['Overlap'])))
    print('Wilcoxin:{}'.format(
        wilcoxon(before_odor['Overlap'], after_odor['Overlap'])))

    print('Before +-: {}'.format(np.mean(before_csp['Overlap'])))
    print('After +-: {}'.format(np.mean(after_csp['Overlap'])))
    print('Wilcoxin:{}'.format(
        wilcoxon(before_csp['Overlap'], after_csp['Overlap'])))

    print('Before --: {}'.format(np.mean(before_csm['Overlap'])))
    print('After --: {}'.format(np.mean(after_csm['Overlap'])))
    print('Wilcoxin:{}'.format(
        wilcoxon(before_csm['Overlap'], after_csm['Overlap'])))
示例#3
0
def plot_summary_odor(res,
                      start_days,
                      end_days,
                      use_colors=True,
                      figure_path=None,
                      reuse=False,
                      excitatory=True):
    ax_args_copy = ax_args.copy()
    res = copy.copy(res)
    get_responsive_cells(res)
    list_of_days = list(zip(start_days, end_days))
    mice = np.unique(res['mouse'])
    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    add_naive_learned(start_end_day_res, start_days, end_days, 'a', 'b')
    filter.assign_composite(start_end_day_res,
                            loop_keys=['odor_valence', 'training_day'])
    start_end_day_res = reduce.new_filter_reduce(
        start_end_day_res,
        filter_keys=['training_day', 'mouse', 'odor_valence'],
        reduce_key='Fraction Responsive')

    odor_list = ['CS+', 'CS-']
    if use_colors:
        colors = ['Green', 'Red']
    else:
        colors = ['Black'] * 2
    ax_args_copy = ax_args_copy.copy()
    ax_args_copy.update({
        'xlim': [-1, 8],
        'ylim': [0, .4],
        'yticks': [0, .1, .2, .3, .4]
    })
    name_str = '_E' if excitatory else '_I'
    for i, odor in enumerate(odor_list):
        save_arg = False
        reuse_arg = True
        if i == 0 and not reuse:
            reuse_arg = False
        if i == len(odor_list) - 1:
            save_arg = True

        plot.plot_results(start_end_day_res,
                          select_dict={'odor_valence': odor},
                          x_key='odor_valence_training_day',
                          y_key='Fraction Responsive',
                          loop_keys='mouse',
                          colors=[colors[i]] * len(mice),
                          path=figure_path,
                          plot_args=line_args,
                          ax_args=ax_args_copy,
                          save=save_arg,
                          reuse=reuse_arg,
                          fig_size=(2.5, 1.5),
                          legend=False,
                          name_str=','.join([str(x)
                                             for x in start_days]) + name_str)

    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    add_naive_learned(start_end_day_res, start_days, end_days, 'a', 'b')
    filter.assign_composite(start_end_day_res,
                            loop_keys=['odor_valence', 'training_day'])
    start_end_day_res = reduce.new_filter_reduce(
        start_end_day_res,
        filter_keys=['training_day', 'mouse', 'odor_standard'],
        reduce_key='Fraction Responsive')

    before_csp = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': 'a',
                                   'odor_valence': 'CS+'
                               })
    after_csp = filter.filter(start_end_day_res,
                              filter_dict={
                                  'training_day': 'b',
                                  'odor_valence': 'CS+'
                              })
    before_csm = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': 'a',
                                   'odor_valence': 'CS-'
                               })
    after_csm = filter.filter(start_end_day_res,
                              filter_dict={
                                  'training_day': 'b',
                                  'odor_valence': 'CS-'
                              })

    try:
        from scipy.stats import ranksums, wilcoxon, kruskal
        print('Before CS+: {}'.format(
            np.mean(before_csp['Fraction Responsive'])))
        print('After CS+: {}'.format(np.mean(
            after_csp['Fraction Responsive'])))
        print('Wilcoxin:{}'.format(
            wilcoxon(before_csp['Fraction Responsive'],
                     after_csp['Fraction Responsive'])))

        print('Before CS-: {}'.format(
            np.mean(before_csm['Fraction Responsive'])))
        print('After CS-: {}'.format(np.mean(
            after_csm['Fraction Responsive'])))
        print('Wilcoxin:{}'.format(
            wilcoxon(before_csm['Fraction Responsive'],
                     after_csm['Fraction Responsive'])))
    except:
        print('stats didnt work')
示例#4
0
def plot_summary_odor_pretraining(res,
                                  start_days,
                                  end_days,
                                  arg_naive,
                                  figure_path,
                                  save,
                                  excitatory=True):
    ax_args_copy = ax_args.copy()
    res = copy.copy(res)
    list_of_days = list(zip(start_days, end_days))
    mice = np.unique(res['mouse'])
    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    get_responsive_cells(start_end_day_res)

    if arg_naive:
        day_start = filter.filter(start_end_day_res,
                                  {'odor_standard': 'PT Naive'})
        day_start['odor_standard'] = np.array(['PT CS+'] *
                                              len(day_start['odor_standard']))
        day_end = filter.filter_days_per_mouse(start_end_day_res,
                                               days_per_mouse=end_days)
        day_end = filter.filter(day_end, {'odor_standard': 'PT CS+'})
        reduce.chain_defaultdicts(day_start, day_end)
        start_end_day_res = day_start
    else:
        start_end_day_res = filter.exclude(start_end_day_res,
                                           {'odor_standard': 'PT Naive'})

    add_naive_learned(start_end_day_res, start_days, end_days, 'a', 'b')
    filter.assign_composite(start_end_day_res,
                            loop_keys=['odor_standard', 'training_day'])

    odor_list = ['PT CS+']
    colors = ['Orange']
    ax_args_copy = ax_args_copy.copy()
    ax_args_copy.update({
        'xlim': [-1, 10],
        'ylim': [0, .4],
        'yticks': [0, .1, .2, .3, .4]
    })
    for i, odor in enumerate(odor_list):
        save_arg = False
        reuse_arg = True
        if i == 0:
            reuse_arg = False

        if save and i == len(odor_list) - 1:
            save_arg = True

        plot.plot_results(start_end_day_res,
                          select_dict={'odor_standard': odor},
                          x_key='odor_standard_training_day',
                          y_key='Fraction Responsive',
                          loop_keys='mouse',
                          colors=[colors[i]] * len(mice),
                          path=figure_path,
                          plot_args=line_args,
                          ax_args=ax_args_copy,
                          save=save_arg,
                          reuse=reuse_arg,
                          fig_size=(2.5, 1.5),
                          legend=False,
                          name_str='_E' if excitatory else '_I')

    before_csm = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': 'a',
                                   'odor_standard': 'PT CS+'
                               })
    after_csm = filter.filter(start_end_day_res,
                              filter_dict={
                                  'training_day': 'b',
                                  'odor_standard': 'PT CS+'
                              })
    from scipy.stats import ranksums, wilcoxon, kruskal

    print('Before PT CS+: {}'.format(np.mean(
        before_csm['Fraction Responsive'])))
    print('After PT CS+: {}'.format(np.mean(after_csm['Fraction Responsive'])))
    from scipy.stats import sem
    print('After PT CS+ STD: {}'.format(sem(after_csm['Fraction Responsive'])))
    print('Wilcoxin:{}'.format(
        wilcoxon(before_csm['Fraction Responsive'],
                 after_csm['Fraction Responsive'])))
示例#5
0
def plot_summary_odor_and_water(res,
                                odor_start_days,
                                water_start_days,
                                end_days,
                                use_colors=True,
                                excitatory=True,
                                arg='odor_valence',
                                figure_path=None):
    include_water = True

    ax_args_copy = ax_args.copy()
    res = copy.copy(res)
    get_responsive_cells(res)
    mice = np.unique(res['mouse'])

    list_of_days = list(zip(odor_start_days, end_days))
    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    start_end_day_res = filter.exclude(start_end_day_res,
                                       {'odor_valence': 'US'})
    add_naive_learned(start_end_day_res, odor_start_days, end_days, 'a', 'b')

    if include_water:
        list_of_days = list(zip(water_start_days, end_days))
        start_end_day_res_water = filter.filter_days_per_mouse(
            res, days_per_mouse=list_of_days)
        start_end_day_res_water = filter.filter(start_end_day_res_water,
                                                {'odor_valence': 'US'})
        add_naive_learned(start_end_day_res_water, water_start_days, end_days,
                          'a', 'b')
        reduce.chain_defaultdicts(start_end_day_res, start_end_day_res_water)

    ax_args_copy = ax_args_copy.copy()
    if arg == 'odor_valence':
        start_end_day_res = reduce.new_filter_reduce(
            start_end_day_res,
            filter_keys=['training_day', 'mouse', 'odor_valence'],
            reduce_key='Fraction Responsive')
        odor_list = ['CS+', 'CS-']
        ax_args_copy.update({
            'xlim': [-1, 6],
            'ylim': [0, .6],
            'yticks': [0, .1, .2, .3, .4, .5]
        })
        colors = ['Green', 'Red']
    elif arg == 'naive':
        arg = 'odor_valence'
        start_end_day_res = reduce.new_filter_reduce(
            start_end_day_res,
            filter_keys=['training_day', 'mouse', 'odor_valence'],
            reduce_key='Fraction Responsive')
        odor_list = ['CS+']
        ax_args_copy.update({
            'xlim': [-1, 4],
            'ylim': [0, .6],
            'yticks': [0, .1, .2, .3, .4, .5]
        })
        colors = ['GoldenRod']
    else:
        odor_list = ['CS+1', 'CS+2', 'CS-1', 'CS-2']
        colors = ['Green', 'Green', 'Red', 'Red']
        ax_args_copy.update({
            'xlim': [-1, 10],
            'ylim': [0, .6],
            'yticks': [0, .1, .2, .3, .4, .5]
        })

    filter.assign_composite(start_end_day_res, loop_keys=[arg, 'training_day'])
    if not use_colors:
        colors = ['Black'] * 4

    name_str = '_E' if excitatory else '_I'
    for i, odor in enumerate(odor_list):
        reuse_arg = True
        if i == 0:
            reuse_arg = False
        plot.plot_results(start_end_day_res,
                          select_dict={arg: odor},
                          x_key=arg + '_training_day',
                          y_key='Fraction Responsive',
                          loop_keys='mouse',
                          colors=[colors[i]] * len(mice),
                          path=figure_path,
                          plot_args=line_args,
                          ax_args=ax_args_copy,
                          save=False,
                          reuse=reuse_arg,
                          fig_size=(2.5, 1.5),
                          legend=False,
                          name_str=','.join([str(x) for x in odor_start_days]))

    plot.plot_results(start_end_day_res,
                      select_dict={'odor_standard': 'US'},
                      x_key='training_day',
                      y_key='Fraction Responsive',
                      loop_keys='mouse',
                      colors=['Turquoise'] * len(mice),
                      path=figure_path,
                      plot_args=line_args,
                      ax_args=ax_args_copy,
                      fig_size=(1.6, 1.5),
                      legend=False,
                      reuse=True,
                      save=True,
                      name_str=name_str)

    before_odor = filter.filter(start_end_day_res,
                                filter_dict={
                                    'training_day': 'a',
                                    'odor_valence': ['CS+', 'CS-']
                                })
    after_odor = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': 'b',
                                   'odor_valence': ['CS+', 'CS-']
                               })
    before_csp = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': 'a',
                                   'odor_valence': 'CS+'
                               })
    after_csp = filter.filter(start_end_day_res,
                              filter_dict={
                                  'training_day': 'b',
                                  'odor_valence': 'CS+'
                              })
    before_csm = filter.filter(start_end_day_res,
                               filter_dict={
                                   'training_day': 'a',
                                   'odor_valence': 'CS-'
                               })
    after_csm = filter.filter(start_end_day_res,
                              filter_dict={
                                  'training_day': 'b',
                                  'odor_valence': 'CS-'
                              })
    before_water = filter.filter(start_end_day_res,
                                 filter_dict={
                                     'training_day': 'a',
                                     'odor_valence': 'US'
                                 })
    after_water = filter.filter(start_end_day_res,
                                filter_dict={
                                    'training_day': 'b',
                                    'odor_valence': 'US'
                                })

    try:
        from scipy.stats import ranksums, wilcoxon, kruskal

        print('Before Odor: {}'.format(
            np.mean(before_odor['Fraction Responsive'])))
        print('After Odor: {}'.format(
            np.mean(after_odor['Fraction Responsive'])))
        print('Wilcoxin:{}'.format(
            wilcoxon(before_odor['Fraction Responsive'],
                     after_odor['Fraction Responsive'])))

        print('Before CS+: {}'.format(
            np.mean(before_csp['Fraction Responsive'])))
        print('After CS+: {}'.format(np.mean(
            after_csp['Fraction Responsive'])))
        print('Wilcoxin:{}'.format(
            wilcoxon(before_csp['Fraction Responsive'],
                     after_csp['Fraction Responsive'])))

        print('Before CS-: {}'.format(
            np.mean(before_csm['Fraction Responsive'])))
        print('After CS-: {}'.format(np.mean(
            after_csm['Fraction Responsive'])))
        print('Wilcoxin:{}'.format(
            wilcoxon(before_csm['Fraction Responsive'],
                     after_csm['Fraction Responsive'])))

        print('Before US: {}'.format(
            np.mean(before_water['Fraction Responsive'])))
        print('After US: {}'.format(np.mean(
            after_water['Fraction Responsive'])))
        print('Wilcoxin:{}'.format(
            wilcoxon(before_water['Fraction Responsive'],
                     after_water['Fraction Responsive'])))
    except:
        print('stats didnt work')
示例#6
0
def plot_responsive_difference_odor_and_water(res,
                                              odor_start_days,
                                              water_start_days,
                                              end_days,
                                              use_colors=True,
                                              figure_path=None,
                                              include_water=True,
                                              normalize=False,
                                              pt_start=None,
                                              pt_learned=None,
                                              average=True,
                                              ylim=.22,
                                              reuse_arg=False,
                                              save_arg=True):
    key = 'Change in Fraction Responsive'
    if normalize:
        key = 'Norm. Fraction Responsive'

    def _helper(start_end_day_res):
        combs, list_of_ixs = filter.retrieve_unique_entries(
            start_end_day_res, ['mouse', 'odor_standard'])
        for i, comb in enumerate(combs):
            ixs = list_of_ixs[i]
            assert len(ixs) == 2

            if start_end_day_res['training_day'][0] == 'Naive':
                ref = ixs[0]
                test = ixs[1]
            elif start_end_day_res['training_day'][0] == 'Learned':
                ref = ixs[1]
                test = ixs[0]
            else:
                raise ValueError('cannot find ref day')

            if normalize:
                start_end_day_res[key][test] = start_end_day_res['Fraction Responsive'][test] / \
                                               start_end_day_res['Fraction Responsive'][ref]
                start_end_day_res[key][ref] = 1
            else:

                start_end_day_res[key][test] = start_end_day_res['Fraction Responsive'][test] - \
                                               start_end_day_res['Fraction Responsive'][ref]
                start_end_day_res[key][ref] = 0

    ax_args_copy = ax_args.copy()
    res = copy.copy(res)
    get_responsive_cells(res)
    list_of_days = list(zip(odor_start_days, end_days))
    mice = np.unique(res['mouse'])
    res[key] = np.zeros_like(res['Fraction Responsive'])
    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    start_end_day_res = filter.filter(
        start_end_day_res, {'odor_valence': ['CS+', 'CS-', 'Naive']})
    add_naive_learned(start_end_day_res, odor_start_days, end_days)

    odors = ['CS+', 'CS-', 'Naive']
    if 'PT CS+' in np.unique(res['odor_valence']):
        odors = ['PT CS+'] + odors
        list_of_days = list(zip(pt_start, pt_learned))
        start_end_day_res_pt = filter.filter_days_per_mouse(
            res, days_per_mouse=list_of_days)
        start_end_day_res_pt = filter.filter(start_end_day_res_pt,
                                             {'odor_valence': 'PT CS+'})
        add_naive_learned(start_end_day_res_pt, pt_start, pt_learned)
        reduce.chain_defaultdicts(start_end_day_res, start_end_day_res_pt)

    if include_water:
        odors += ['US']
        list_of_days = list(zip(water_start_days, end_days))
        start_end_day_res_water = filter.filter_days_per_mouse(
            res, days_per_mouse=list_of_days)
        start_end_day_res_water = filter.filter(start_end_day_res_water,
                                                {'odor_valence': 'US'})
        add_naive_learned(start_end_day_res_water, water_start_days, end_days)
        reduce.chain_defaultdicts(start_end_day_res, start_end_day_res_water)

    filter.assign_composite(start_end_day_res,
                            loop_keys=['odor_standard', 'training_day'])
    if average:
        start_end_day_res = reduce.new_filter_reduce(
            start_end_day_res,
            filter_keys=['odor_valence', 'mouse', 'training_day'],
            reduce_key=key)
        start_end_day_res.pop(key + '_sem')
    _helper(start_end_day_res)
    start_end_day_res = filter.filter(start_end_day_res,
                                      {'training_day': 'Learned'})
    summary_res = reduce.new_filter_reduce(start_end_day_res,
                                           filter_keys='odor_valence',
                                           reduce_key=key)

    dict = {
        'CS+': 'Green',
        'CS-': 'Red',
        'US': 'Turquoise',
        'PT CS+': 'Orange',
        'Naive': 'Gray'
    }
    if use_colors:
        colors = [
            dict[key] for key in np.unique(start_end_day_res['odor_valence'])
        ]
    else:
        colors = ['Black'] * 6

    ax_args_copy = ax_args_copy.copy()
    n_valence = len(np.unique(summary_res['odor_valence']))
    ax_args_copy.update({
        'xlim': [-.5, 3.5],
        'ylim': [-ylim, ylim],
        'yticks': [-.3, -.2, -.1, 0, .1, .2, .3]
    })
    if normalize:
        ax_args_copy.update({
            'xlim': [-.5, 3.5],
            'ylim': [-.1, 1.5],
            'yticks': [0, .5, 1, 1.5]
        })
    error_args_ = {
        'fmt': '.',
        'capsize': 2,
        'elinewidth': 1,
        'markersize': 2,
        'alpha': .75
    }
    scatter_args_copy = scatter_args.copy()
    scatter_args_copy.update({'s': 3})

    for i, odor in enumerate(odors):
        reuse = True
        if i == 0:
            reuse = reuse_arg
        plot.plot_results(start_end_day_res,
                          loop_keys='odor_valence',
                          select_dict={'odor_valence': odor},
                          x_key='odor_valence',
                          y_key=key,
                          colors=[dict[odor]] * len(mice),
                          path=figure_path,
                          plot_args=scatter_args_copy,
                          plot_function=plt.scatter,
                          ax_args=ax_args_copy,
                          save=False,
                          reuse=reuse,
                          fig_size=(2, 1.5),
                          rect=(.25, .2, .6, .6),
                          legend=False,
                          name_str=','.join([str(x) for x in odor_start_days]))

    if not normalize:
        plt.plot(plt.xlim(), [0, 0], '--', color='gray', linewidth=1, alpha=.5)

    plot.plot_results(summary_res,
                      x_key='odor_valence',
                      y_key=key,
                      error_key=key + '_sem',
                      colors='black',
                      path=figure_path,
                      plot_args=error_args_,
                      plot_function=plt.errorbar,
                      ax_args=ax_args_copy,
                      save=save_arg,
                      reuse=True,
                      fig_size=(2, 1.5),
                      legend=False)
                res2 = scalpel(res2, keys, mouse, sessions)
                print(np.unique(res2['session'][-1]))

        reduce.chain_defaultdicts(res, res1)
        reduce.chain_defaultdicts(res, res2)

print(np.unique(res['mouse']))

if collapse_arg:
    res1 = filter.filter(res, filter_dict={'experiment': collapse_arg, 'condition':'H'})
    res2 = filter.filter(res, filter_dict={'condition': 'Y'})
    res = reduce.chain_defaultdicts(res1, res2, copy_dict=True)

analysis.analyze(res)
analysis.shift_discrimination_index(res)
filter.assign_composite(res, ['phase', 'odor_valence'])
res = filter.filter(res, {'phase_odor_valence': ['Pretraining_CS+', 'Discrimination_CS+', 'Discrimination_CS-']})

if 'release_of_inhibition' in plotting:
    trace_args_copy = trace_args.copy()
    trace_args_copy.update({'alpha': .5, 'linewidth': .75})
    line_args_copy = line_args.copy()
    line_args.update({'marker':',','markersize':0, 'linewidth':.5})

    y_key = 'bin_ant_23_smooth'
    y_key_bool = 'bin_ant_23_boolean'

    phase_odor_valence = np.unique(res['phase_odor_valence'])
    conditions = np.unique(res['condition'])

    ax_args_cur = ax_args_copy.copy()
示例#8
0
def plot_consistency_within_day(res, start, end, shuffle, pretraining,
                                figure_path):
    d = list(zip(start, end))
    res_temp = filter.filter_days_per_mouse(res, d)
    if pretraining:
        res_temp = filter.filter(res_temp, {'odor_valence': ['PT CS+']})
    else:
        res_temp = filter.filter(res_temp, {'odor_valence': ['CS+', 'CS-']})
    corr_res = _correlation(res_temp)
    corr_res.pop('data')

    analysis.add_naive_learned(corr_res, start, end, '0', '1')
    res_ = reduce.new_filter_reduce(
        corr_res,
        filter_keys=['mouse', 'odor_standard', 'training_day'],
        reduce_key='consistency_corrcoef')
    res_.pop('consistency_corrcoef_sem')
    filter.assign_composite(res_, loop_keys=['training_day', 'odor_valence'])

    if shuffle:
        s = '_shuffled'
    else:
        s = ''

    ax_args_copy = ax_args.copy()
    ax_args_copy.update({
        'xlim': [-.5, 2.5],
        'ylim': [0, .55],
        'yticks': np.arange(0, 1.1, .1)
    })

    swarm_args_copy = swarm_args.copy()
    if pretraining:
        swarm_args_copy.update({'palette': ['gray', 'orange', 'green', 'red']})
    else:
        swarm_args_copy.update({'palette': ['gray', 'gray', 'green', 'red']})

    ix = res_['training_day_odor_valence'] == '1_PT CS+'
    res_['training_day_odor_valence'][ix] = '1_APT CS+'
    plot.plot_results(res_,
                      x_key='training_day_odor_valence',
                      y_key='consistency_corrcoef',
                      path=figure_path,
                      plot_args=swarm_args_copy,
                      plot_function=sns.stripplot,
                      ax_args=ax_args_copy,
                      reuse=False,
                      save=False,
                      sort=True,
                      name_str=s)

    summary = reduce.new_filter_reduce(res_,
                                       filter_keys='training_day_odor_valence',
                                       reduce_key='consistency_corrcoef')
    plot.plot_results(summary,
                      x_key='training_day_odor_valence',
                      y_key='consistency_corrcoef',
                      error_key='consistency_corrcoef_sem',
                      colors='black',
                      path=figure_path,
                      plot_args=error_args,
                      plot_function=plt.errorbar,
                      save=True,
                      reuse=True,
                      legend=False,
                      name_str=s)

    print(summary['consistency_corrcoef'])

    ix_a = res_['training_day_odor_valence'] == '0_CS+'
    ix_b = res_['training_day_odor_valence'] == '0_CS-'
    ix_c = res_['training_day_odor_valence'] == '1_CS+'
    ix_d = res_['training_day_odor_valence'] == '1_CS-'
    a = res_['consistency_corrcoef'][ix_a]
    b = res_['consistency_corrcoef'][ix_b]
    c = res_['consistency_corrcoef'][ix_c]
    d = res_['consistency_corrcoef'][ix_d]

    from scipy.stats import ranksums, wilcoxon, kruskal
    import scikit_posthocs

    print(kruskal(a, b, c))
    x = scikit_posthocs.posthoc_dunn(a=[a, b, c, d], p_adjust=None)
    print(x)
示例#9
0
def plot_stability_across_days(res, start_days_per_mouse, learned_days_per_mouse, figure_path):
    strengthen_starting_threshold = .1
    strengthen_absolute_threshold = .2
    strengthen_relative_threshold = 2
    weaken_starting_threshold = .3
    weaken_absolute_threshold = .15
    weaken_relative_threshold = .5

    res = copy.copy(res)
    res = filter.filter(res, {'odor_valence':['CS+', 'CS-']})
    list_odor_on = res['DAQ_O_ON_F']
    list_water_on = res['DAQ_W_ON_F']
    for i in range(len(list_odor_on)):
        dff_list = res['dff'][i]
        dff_max = np.max(dff_list[:,list_odor_on[i]: list_water_on[i]],axis=1)
        res['dff_max'].append(dff_max)
    res['dff_max'] = np.array(res['dff_max'])

    out = defaultdict(list)
    combinations, ixs = filter.retrieve_unique_entries(res, ['mouse','odor'])
    for combination, ix in zip(combinations, ixs):
        odor_valence = np.unique(res['odor_valence'][ix])
        mouse = np.unique(res['mouse'][ix])
        days = res['day'][ix]
        assert len(days) == len(np.unique(days))
        assert len(mouse) == 1
        sort_ix = np.argsort(days)
        list_of_dff_max = res['dff_max'][ix][sort_ix]
        list_of_ssig = res['sig'][ix][sort_ix]
        data = [x * y for x, y in zip(list_of_ssig, list_of_dff_max)]
        data = np.array(data)

        strengthen_mask = data[0,:] > strengthen_starting_threshold
        strengthen_overall_threshold = np.max((data[0,:] * strengthen_relative_threshold, data[0,:] + strengthen_absolute_threshold), axis=0)
        strengthen_passed_mask = strengthen_overall_threshold < data
        strengthen_any = np.any(strengthen_passed_mask[1:,:], axis=0)
        n_strengthen_passed = np.sum(strengthen_any * strengthen_mask)
        n_strengthen_denom = np.sum(strengthen_mask)

        new_mask = np.invert(strengthen_mask)
        n_new_passed = np.sum(strengthen_any * new_mask)
        n_new_denom = np.sum(new_mask)

        weaken_mask = data[0,:] > weaken_starting_threshold
        weaken_overall_threshold = np.min((data[0,:] * weaken_relative_threshold, data[0,:] - weaken_absolute_threshold), axis=0)
        weaken_passed_mask = weaken_overall_threshold > data
        weaken_any = np.any(weaken_passed_mask[1:,:], axis=0)
        n_weaken_passed = np.sum(weaken_any * weaken_mask)
        n_weaken_denom = np.sum(weaken_mask)

        strs = ['strengthen_denom', 'strengthen_pass', 'new_denom', 'new_pass','weaken_denom','weaken_pass']
        vals = [n_strengthen_denom, n_strengthen_passed, n_new_denom, n_new_passed, n_weaken_denom, n_weaken_passed]

        for k, v in zip(strs,vals):
            out['Type'].append(k)
            out['Count'].append(v)
            out['mouse'].append(mouse[0])
            out['odor_valence'].append(odor_valence[0])
    for k, v in out.items():
        out[k] = np.array(v)

    def _helper(res):
        out = defaultdict(list)
        strs = [['strengthen_denom', 'strengthen_pass'], ['new_denom', 'new_pass'], ['weaken_denom', 'weaken_pass']]
        out_strs = ['up', 'new', 'down']
        for i, keys in enumerate(strs):
            ix_denom = res['Type'] == keys[0]
            ix_numer = res['Type'] == keys[1]
            numer = np.sum(res['Count'][ix_numer])
            denom = np.sum(res['Count'][ix_denom])
            fraction =  numer/ denom
            out['Type'].append(out_strs[i])
            out['Fraction'].append(fraction)
            out['numer'].append(numer)
            out['denom'].append(denom)
        for k, v in out.items():
            out[k] = np.array(v)
        return out

    ax_args_copy = ax_args.copy()
    ax_args_copy.update({'ylim':[0, 0.5], 'yticks':[0, .1, .2, .3, .4, .5]})
    overall = copy.copy(out)
    csm_res = filter.filter(overall, {'odor_valence':'CS-'})
    csp_res = filter.filter(overall, {'odor_valence':'CS+'})

    csp_stats = _helper(csp_res)
    csp_stats['Condition'] = np.array(['CS+'] * len(csp_stats['Type']))
    csm_stats = _helper(csm_res)
    csm_stats['Condition'] = np.array(['CS-'] * len(csm_stats['Type']))
    overall_stats = reduce.chain_defaultdicts(csp_stats, csm_stats, copy_dict=True)
    filter.assign_composite(overall_stats, ['Type', 'Condition'])

    bar_args = {'alpha': 1, 'edgecolor':'black','linewidth':1}
    colors = ['Green','Red']
    save_path, name = plot.plot_results(overall_stats, x_key='Type_Condition', y_key='Fraction', sort=True,
                                        colors=colors,
                                        path=figure_path,
                                        plot_function=plt.bar, plot_args=bar_args, ax_args=ax_args_copy,
                                        save=False, reuse=False)

    strs = ['down','new','up']
    fontsize = 4
    for i in range(3):
        ix = csp_stats['Type'] == strs[i]
        numer = csp_stats['numer'][ix][0]
        denom = csp_stats['denom'][ix][0]

        x = i * 2
        y = numer/denom
        y_offset = .025
        plt.text(x, y + y_offset, str(numer) + '/' + str(denom), horizontalalignment = 'center', fontsize= fontsize)

    strs = ['down','new','up']
    for i in range(3):
        ix = csm_stats['Type'] == strs[i]
        numer = csm_stats['numer'][ix][0]
        denom = csm_stats['denom'][ix][0]

        x = i * 2 + 1
        y = numer/denom
        y_offset = .025
        plt.text(x, y + y_offset, str(numer) + '/' + str(denom), horizontalalignment = 'center', fontsize= fontsize)
    plot._easy_save(save_path, name, pdf=True)

    overall_stats_no_distinction = _helper(overall)
    save_path, name = plot.plot_results(overall_stats_no_distinction, x_key='Type', y_key='Fraction', sort=True,
                      colors=['Grey']*10,
                      path=figure_path,
                      plot_function=plt.bar, plot_args=bar_args, ax_args=ax_args_copy,
                      save=False, reuse=False)
    strs = ['down','new','up']
    for i in range(3):
        ix = overall_stats_no_distinction['Type'] == strs[i]
        numer = overall_stats_no_distinction['numer'][ix][0]
        denom = overall_stats_no_distinction['denom'][ix][0]

        x = i
        y = numer/denom
        y_offset = .025
        plt.text(x, y + y_offset, str(numer) + '/' + str(denom), horizontalalignment = 'center', fontsize= fontsize)
    plot._easy_save(save_path, name, pdf=True)
else:
    raise ValueError('wtf')

if 'summary_raw' in experiments:
    line_args_local = line_args.copy()
    line_args_local.update({
        'marker': '.',
        'markersize': .5,
        'linewidth': .75,
        'alpha': .5
    })

    all_res_ = filter.filter(all_res,
                             {'odor_valence': ['CS+', 'CS-', 'PT CS+']})
    _collapse_conditions(all_res_, control_condition='YFP', str=collapse_arg)
    filter.assign_composite(all_res_, [collapse_arg, 'odor_valence'])
    composite_arg = collapse_arg + '_' + 'odor_valence'

    valences = np.unique(all_res_['odor_valence'])
    for valence in valences:
        color = [color_dict_valence[valence]]
        for i in range(len(color)):
            color.append('black')

        if 'PT CS+' in valence or 'PT Naive' in valence:
            ax_args = ax_args_pt
        elif 'PT CS+' in all_res_['odor_valence']:
            ax_args = ax_args_dt
        else:
            ax_args = ax_args_mush
示例#11
0
def magnitude_histogram(res,
                        learned_days,
                        end_days,
                        use_colors=True,
                        figure_path=None,
                        reuse=False):
    def _helper(res):
        list_odor_on = res['DAQ_O_ON_F']
        list_water_on = res['DAQ_W_ON_F']
        list_of_dff = res['dff']
        for i, dff in enumerate(list_of_dff):
            s = list_odor_on[i]
            e = list_water_on[i]
            max = np.max(dff[:, s:e], axis=1)
            res['max_dff'].append(max)
        res['max_dff'] = np.array(res['max_dff'])

    def _helper1(res):
        for data in res['amplitude']:
            res['max_dff'].append(data[data > 0])
        res['max_dff'] = np.array(res['max_dff'])

    res = copy.copy(res)
    # list_of_days = list(zip(learned_days, end_days))
    list_of_days = end_days
    start_end_day_res = filter.filter_days_per_mouse(
        res, days_per_mouse=list_of_days)
    _helper(start_end_day_res)
    add_naive_learned(start_end_day_res, learned_days, end_days)
    filter.assign_composite(start_end_day_res,
                            loop_keys=['odor_standard', 'training_day'])
    csp = filter.filter(start_end_day_res, filter_dict={'odor_valence': 'CS+'})
    csm = filter.filter(start_end_day_res, filter_dict={'odor_valence': 'CS-'})

    csp_data = np.hstack(csp['max_dff'].flat)
    csm_data = np.hstack(csm['max_dff'].flat)

    fig = plt.figure(figsize=(3, 2))
    ax = fig.add_axes([.2, .2, .7, .7])
    x_upper = 1.01
    y_upper = .5
    bins = 20
    xrange = [0, x_upper]
    yrange = [0, y_upper]
    xticks = np.arange(0, x_upper, .2)
    yticks = np.arange(0, y_upper, 3)
    legends = ['CS+', 'CS-']
    colors = ['green', 'red']

    for i, data in enumerate([csp_data, csm_data]):
        plt.hist(data,
                 bins=bins,
                 range=xrange,
                 density=True,
                 color=colors[i],
                 alpha=.5)
    plt.legend(legends, loc=1, bbox_to_anchor=(1.05, .4), fontsize=5)
    ax.set_xlabel('DF/F')
    ax.set_ylabel('Fraction')
    ax.set_xticks(xticks)
    # ax.set_yticks(yticks)
    plt.xlim(xrange)
    # plt.ylim(yrange)
    plt.show()