def test_1d_0P(): global inf f = KalmanFilter (dim_x=2, dim_z=1) inf = InformationFilter (dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) f.F = (np.array([[1., 1.], [0., 1.]])) # state transition matrix f.H = np.array([[1., 0.]]) # Measurement function f.R = np.array([[5.]]) # state uncertainty f.Q = np.eye(2)*0.0001 # process uncertainty f.P = np.diag([20., 20.]) inf.x = f.x.copy() inf.F = f.F.copy() inf.H = np.array([[1.,0.]]) # Measurement function inf.R_inv *= 1./5 # state uncertainty inf.Q = np.eye(2)*0.0001 inf.P_inv = 0.000000000000000000001 #inf.P_inv = inv(f.P) m = [] r = [] r2 = [] zs = [] for t in range (50): # create measurement = t plus white noise z = t + random.randn()* np.sqrt(5) zs.append(z) # perform kalman filtering f.predict() f.update(z) inf.predict() inf.update(z) try: print(t, inf.P) except: pass # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) #assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}' if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_against_kf(): inv = np.linalg.inv dt = 1.0 IM = np.eye(2) Q = np.array([[.25, 0.5], [0.5, 1]]) F = np.array([[1, dt], [0, 1]]) #QI = inv(Q) P = inv(IM) from filterpy.kalman import InformationFilter from filterpy.common import Q_discrete_white_noise #f = IF2(2, 1) r_std = .2 R = np.array([[r_std*r_std]]) RI = inv(R) '''f.F = F.copy() f.H = np.array([[1, 0.]]) f.RI = RI.copy() f.Q = Q.copy() f.IM = IM.copy()''' kf = KalmanFilter(2, 1) kf.F = F.copy() kf.H = np.array([[1, 0.]]) kf.R = R.copy() kf.Q = Q.copy() f0 = InformationFilter(2, 1) f0.F = F.copy() f0.H = np.array([[1, 0.]]) f0.R_inv = RI.copy() f0.Q = Q.copy() #f.IM = np.zeros((2,2)) for i in range(1, 50): z = i + (np.random.rand() * r_std) f0.predict() #f.predict() kf.predict() f0.update(z) #f.update(z) kf.update(z) print(f0.x.T, kf.x.T) assert np.allclose(f0.x, kf.x)
def test_1d_0P(): f = KalmanFilter (dim_x=2, dim_z=1) inf = InformationFilter (dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) f.F = (np.array([[1.,1.], [0.,1.]])) # state transition matrix f.H = np.array([[1.,0.]]) # Measurement function f.R = np.array([[5.]]) # state uncertainty f.Q = np.eye(2)*0.0001 # process uncertainty f.P = np.diag([20., 20.]) inf.x = f.x.copy() inf.F = f.F.copy() inf.H = np.array([[1.,0.]]) # Measurement function inf.R_inv *= 1./5 # state uncertainty inf.Q *= 0.0001 inf.P_inv = 0 #inf.P_inv = inv(f.P) m = [] r = [] r2 = [] zs = [] for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.predict() f.update(z) inf.predict() inf.update(z) # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) #assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12 if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_1d(): f = KalmanFilter(dim_x=2, dim_z=1) inf = InformationFilter(dim_x=2, dim_z=1) # ensure __repr__ doesn't assert str(inf) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) inf.x = f.x.copy() f.F = (np.array([[1.,1.], [0.,1.]])) # state transition matrix inf.F = f.F.copy() f.H = np.array([[1.,0.]]) # Measurement function inf.H = np.array([[1.,0.]]) # Measurement function f.R *= 5 # state uncertainty inf.R_inv *= 1./5 # state uncertainty f.Q *= 0.0001 # process uncertainty inf.Q *= 0.0001 m = [] r = [] r2 = [] zs = [] s = Saver(inf) for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.update(z) f.predict() inf.update(z) inf.predict() # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) print(inf.y) print(inf.SI) s.save() assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12 if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_against_kf(): inv = np.linalg.inv dt = 1.0 IM = np.eye(2) Q = np.array([[.25, 0.5], [0.5, 1]]) F = np.array([[1, dt], [0, 1]]) #QI = inv(Q) P = inv(IM) from filterpy.kalman import InformationFilter from filterpy.common import Q_discrete_white_noise #f = IF2(2, 1) r_std = .2 R = np.array([[r_std * r_std]]) RI = inv(R) '''f.F = F.copy() f.H = np.array([[1, 0.]]) f.RI = RI.copy() f.Q = Q.copy() f.IM = IM.copy()''' kf = KalmanFilter(2, 1) kf.F = F.copy() kf.H = np.array([[1, 0.]]) kf.R = R.copy() kf.Q = Q.copy() f0 = InformationFilter(2, 1) f0.F = F.copy() f0.H = np.array([[1, 0.]]) f0.R_inv = RI.copy() f0.Q = Q.copy() #f.IM = np.zeros((2,2)) for i in range(1, 50): z = i + (np.random.rand() * r_std) f0.predict() #f.predict() kf.predict() f0.update(z) #f.update(z) kf.update(z) print(f0.x.T, kf.x.T) assert np.allclose(f0.x, kf.x)
def test_1d(): f = KalmanFilter (dim_x=2, dim_z=1) inf = InformationFilter (dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) inf.x = f.x.copy() f.F = (np.array([[1.,1.], [0.,1.]])) # state transition matrix inf.F = f.F.copy() f.H = np.array([[1.,0.]]) # Measurement function inf.H = np.array([[1.,0.]]) # Measurement function f.R = 5. # state uncertainty inf.R_inv = 1./5 # state uncertainty f.Q = 0.0001 # process uncertainty inf.Q = 0.0001 m = [] r = [] r2 = [] zs = [] for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.update(z) f.predict() inf.update(z) inf.predict() # save data r.append (f.x[0,0]) r2.append (inf.x[0,0]) m.append(z) assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12 if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)
def test_1d_0P(): global inf f = KalmanFilter(dim_x=2, dim_z=1) inf = InformationFilter(dim_x=2, dim_z=1) f.x = np.array([[2.], [0.]]) # initial state (location and velocity) f.F = (np.array([[1., 1.], [0., 1.]])) # state transition matrix f.H = np.array([[1., 0.]]) # Measurement function f.R = np.array([[5.]]) # state uncertainty f.Q = np.eye(2) * 0.0001 # process uncertainty f.P = np.diag([20., 20.]) inf.x = f.x.copy() inf.F = f.F.copy() inf.H = np.array([[1., 0.]]) # Measurement function inf.R_inv *= 1. / 5 # state uncertainty inf.Q = np.eye(2) * 0.0001 inf.P_inv = 0.000000000000000000001 #inf.P_inv = inv(f.P) m = [] r = [] r2 = [] zs = [] for t in range(50): # create measurement = t plus white noise z = t + random.randn() * np.sqrt(5) zs.append(z) # perform kalman filtering f.predict() f.update(z) inf.predict() inf.update(z) try: print(t, inf.P) except: pass # save data r.append(f.x[0, 0]) r2.append(inf.x[0, 0]) m.append(z) #assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}' if DO_PLOT: plt.plot(m) plt.plot(r) plt.plot(r2)