def main(): filter = Filter(model_file="model.p", scaler_file="scaler.p") #filter.predict_batch(image_path=glob("./labeled_data_smallset/vehicles_smallset/**/*.*")) #filter.predict_batch(image_path=filter.test_clf_image_paths) frame = None cnt = 0 for path in filter.test_video_images_path: cnt += 1 if frame != None and cnt == frame: image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB) final_image = filter.pipepine(image) plt.imshow(final_image) plt.show() break elif frame == None: image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB) final_image = filter.pipepine(image) plt.imshow(final_image) plt.show() # image_res, centroids_and_sizes = filter.sliding_box_multi_level(image, level=2) """
def main(): filter = Filter(model_file="model.p", scaler_file="scaler.p") clip = VideoFileClip("project_video_short3.mp4") cnt = 0 stop_frame_num = 113 for img in clip.iter_frames(): cnt += 1 if (cnt == stop_frame_num): if img.shape[2] == 4: img = img[:, :, :3] ret = filter.pipepine(img) plt.figure(figsize=(16, 10)) plt.imshow(filter.diagScreen) plt.subplots_adjust(left=0.03, bottom=0.03, right=1, top=1) plt.show()