示例#1
0
        return v

    def pick_box(self, c):
        color, depth, segmentation = c.get_observation()

        np.random.shuffle(self.box_ids)
        for i in self.box_ids:
            m = np.where(segmentation == i)
            if len(m[0]):
                min_x = 10000
                max_x = -1
                min_y = 10000
                max_y = -1
                for y, x in zip(m[0], m[1]):
                    min_x = min(min_x, x)
                    max_x = max(max_x, x)
                    min_y = min(min_y, y)
                    max_y = max(max_y, y)
                x, y = round((min_x + max_x) / 2), round((min_y + max_y) / 2)
                return self.get_global_position_from_camera(c, depth, x, y)

        return False


if __name__ == '__main__':
    np.random.seed(0)
    env = FinalEnv()
    # env.run(Solution(), render=True, render_interval=5, debug=True)
    env.run(Solution(), render=True, render_interval=5)
    env.close()
示例#2
0
        return v

    def pick_box(self, c):
        color, depth, segmentation = c.get_observation()

        np.random.shuffle(self.box_ids)
        for i in self.box_ids:
            m = np.where(segmentation == i)
            if len(m[0]):
                min_x = 10000
                max_x = -1
                min_y = 10000
                max_y = -1
                for y, x in zip(m[0], m[1]):
                    min_x = min(min_x, x)
                    max_x = max(max_x, x)
                    min_y = min(min_y, y)
                    max_y = max(max_y, y)
                x, y = round((min_x + max_x) / 2), round((min_y + max_y) / 2)
                return self.get_global_position_from_camera(c, depth, x, y)

        return False


if __name__ == '__main__':
    np.random.seed(0)
    env = FinalEnv()
    # env.run(Solution(), render=True, render_interval=5, debug=True)
    env.run(Solution())
    env.close()
示例#3
0
# Licensing Information:  You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC San Diego.
# Created by Yuzhe Qin, Fanbo Xiang

from final_env import FinalEnv
from solution import Solution
import numpy as np

if __name__ == '__main__':
    # at test time, we will use different random seeds.
    np.random.seed(0)
    env = FinalEnv()
    env.run(Solution(), render=True, render_interval=5, debug=True)
    # at test time, run the following
    # env.run(Solution())
    env.close()