return v def pick_box(self, c): color, depth, segmentation = c.get_observation() np.random.shuffle(self.box_ids) for i in self.box_ids: m = np.where(segmentation == i) if len(m[0]): min_x = 10000 max_x = -1 min_y = 10000 max_y = -1 for y, x in zip(m[0], m[1]): min_x = min(min_x, x) max_x = max(max_x, x) min_y = min(min_y, y) max_y = max(max_y, y) x, y = round((min_x + max_x) / 2), round((min_y + max_y) / 2) return self.get_global_position_from_camera(c, depth, x, y) return False if __name__ == '__main__': np.random.seed(0) env = FinalEnv() # env.run(Solution(), render=True, render_interval=5, debug=True) env.run(Solution(), render=True, render_interval=5) env.close()
return v def pick_box(self, c): color, depth, segmentation = c.get_observation() np.random.shuffle(self.box_ids) for i in self.box_ids: m = np.where(segmentation == i) if len(m[0]): min_x = 10000 max_x = -1 min_y = 10000 max_y = -1 for y, x in zip(m[0], m[1]): min_x = min(min_x, x) max_x = max(max_x, x) min_y = min(min_y, y) max_y = max(max_y, y) x, y = round((min_x + max_x) / 2), round((min_y + max_y) / 2) return self.get_global_position_from_camera(c, depth, x, y) return False if __name__ == '__main__': np.random.seed(0) env = FinalEnv() # env.run(Solution(), render=True, render_interval=5, debug=True) env.run(Solution()) env.close()
# Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC San Diego. # Created by Yuzhe Qin, Fanbo Xiang from final_env import FinalEnv from solution import Solution import numpy as np if __name__ == '__main__': # at test time, we will use different random seeds. np.random.seed(0) env = FinalEnv() env.run(Solution(), render=True, render_interval=5, debug=True) # at test time, run the following # env.run(Solution()) env.close()