def test_american_call(): spot_fx_rate = 1.20 call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.AMERICAN_CALL, 1000000, "USD") valueAmerican = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] assert round(valueAmerican, 4) == 0.0255 spot_fx_rate = 1.80 call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.AMERICAN_CALL, 1000000, "USD") valueAmerican = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] assert round(valueAmerican, 4) == 0.5500
def test_european_call(): spot_fx_rate = 1.20 call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_CALL, notional, "USD") valueEuropean = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] assert round(valueEuropean, 4) == 0.0251 spot_fx_rate = 1.80 call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_CALL, notional, "USD") valueEuropean = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] assert round(valueEuropean, 4) == 0.5277
def test_FinFXVanillaOptionWystupExample1(): # Example from Book extract by Uwe Wystup with results in Table 1.2 # https://mathfinance.com/wp-content/uploads/2017/06/FXOptionsStructuredProducts2e-Extract.pdf # Not exactly T=1.0 but close so don't exact exact agreement # (in fact I do not get exact agreement even if I do set T=1.0) valuation_date = Date(13, 2, 2018) expiry_date = Date(13, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR ccy1 = "EUR" ccy2 = "USD" ccy1CCRate = 0.030 # EUR ccy2CCRate = 0.025 # USD currency_pair = ccy1 + ccy2 # Always ccy1ccy2 spot_fx_rate = 1.20 strike_fx_rate = 1.250 volatility = 0.10 notional = 1000000.0 dom_discount_curve = DiscountCurveFlat(valuation_date, ccy2CCRate) for_discount_curve = DiscountCurveFlat(valuation_date, ccy1CCRate) model = BlackScholes(volatility) # Two examples to show that changing the notional currency and notional # keeps the value unchanged notional = 1000000.0 call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_CALL, notional, "EUR", 2) value = call_option.value(1.0, spot_fx_rate, dom_discount_curve, for_discount_curve, model) notional = 1250000.0 call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_CALL, notional, "USD", 2) value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) delta = call_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) testCases.header("value", "delta") testCases.print(value, delta)
def test_FinFXVanillaOptionBloombergExample(): # Example Bloomberg Pricing at # https://stackoverflow.com/questions/48778712/fx-vanilla-call-price-in-quantlib-doesnt-match-bloomberg valuation_date = Date(13, 2, 2018) expiry_date = Date(15, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR forName = "EUR" domName = "USD" forDepoRate = 0.05 # EUR domDepoRate = 0.02 # USD currency_pair = forName + domName # Always FORDOM spot_fx_rate = 1.30 strike_fx_rate = 1.3650 volatility = 0.20 spot_days = 0 settlement_date = valuation_date.add_weekdays(spot_days) maturity_date = settlement_date.add_months(12) notional = 1000000.0 notional_currency = "EUR" calendar_type = CalendarTypes.TARGET depos = [] fras = [] swaps = [] depo = IborDeposit(settlement_date, maturity_date, domDepoRate, DayCountTypes.ACT_360, notional, calendar_type) depos.append(depo) dom_discount_curve = IborSingleCurve(valuation_date, depos, fras, swaps) depos = [] fras = [] swaps = [] depo = IborDeposit(settlement_date, maturity_date, forDepoRate, DayCountTypes.ACT_360, notional, calendar_type) depos.append(depo) for_discount_curve = IborSingleCurve(valuation_date, depos, fras, swaps) model = BlackScholes(volatility) call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_CALL, notional, notional_currency, 2) value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) delta = call_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) testCases.header("value", "delta") testCases.print(value, delta)
def test_FinFXVanillaOptionWystupExample2(): # Example Bloomberg Pricing at # https://stackoverflow.com/questions/48778712/fx-vanilla-call-price-in-quantlib-doesnt-match-bloomberg valuation_date = Date(13, 2, 2018) expiry_date = Date(13, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR ccy1 = "EUR" ccy2 = "USD" ccy1CCRate = 0.0396 # EUR ccy2CCRate = 0.0357 # USD currency_pair = ccy1 + ccy2 # Always ccy1ccy2 spot_fx_rate = 0.9090 strike_fx_rate = 0.9090 volatility = 0.12 notional = 1000000.0 dom_discount_curve = DiscountCurveFlat(valuation_date, ccy2CCRate) for_discount_curve = DiscountCurveFlat(valuation_date, ccy1CCRate) model = BlackScholes(volatility) # Two examples to show that changing the notional currency and notional # keeps the value unchanged notional = 1000000.0 call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_PUT, notional, "EUR", 2) value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) assert round(value['v'], 4) == 0.0436 assert round(value['cash_dom'], 4) == 43612.8769 assert round(value['cash_for'], 4) == 47978.9625 assert round(value['pips_dom'], 4) == 0.0436 assert round(value['pips_for'], 4) == 0.0528 assert round(value['pct_dom'], 4) == 0.0480 assert round(value['pct_for'], 4) == 0.0480 assert round(value['not_dom'], 4) == 909000.0 assert round(value['not_for'], 4) == 1000000.0 assert value['ccy_dom'] == 'USD' assert value['ccy_for'] == 'EUR' delta = call_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) assert round(delta['pips_spot_delta'], 4) == -0.4700 assert round(delta['pips_fwd_delta'], 4) == -0.4890 assert round(delta['pct_spot_delta_prem_adj'], 4) == -0.5180 assert round(delta['pct_fwd_delta_prem_adj'], 4) == -0.5389
def test_FinFXVanillaOptionWystupExample2(): # Example Bloomberg Pricing at # https://stackoverflow.com/questions/48778712/fx-vanilla-call-price-in-quantlib-doesnt-match-bloomberg valuation_date = Date(13, 2, 2018) expiry_date = Date(13, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR ccy1 = "EUR" ccy2 = "USD" ccy1CCRate = 0.0396 # EUR ccy2CCRate = 0.0357 # USD currency_pair = ccy1 + ccy2 # Always ccy1ccy2 spot_fx_rate = 0.9090 strike_fx_rate = 0.9090 volatility = 0.12 notional = 1000000.0 dom_discount_curve = DiscountCurveFlat(valuation_date, ccy2CCRate) for_discount_curve = DiscountCurveFlat(valuation_date, ccy1CCRate) model = BlackScholes(volatility) # Two examples to show that changing the notional currency and notional # keeps the value unchanged notional = 1000000.0 call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, FinOptionTypes.EUROPEAN_PUT, notional, "EUR", 2) value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) delta = call_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) testCases.header("value", "delta") testCases.print(value, delta)
def test_FinFXVanillaOptionHullExample(): # Example from Hull 4th edition page 284 valuation_date = Date(1, 1, 2015) expiry_date = valuation_date.add_months(4) spot_fx_rate = 1.60 volatility = 0.1411 dom_interest_rate = 0.08 forInterestRate = 0.11 model = BlackScholes(volatility) dom_discount_curve = DiscountCurveFlat(valuation_date, dom_interest_rate) for_discount_curve = DiscountCurveFlat(valuation_date, forInterestRate) num_paths_list = [10000, 20000, 40000, 80000, 160000, 320000] testCases.header("NUMPATHS", "VALUE_BS", "VALUE_MC") strike_fx_rate = 1.60 for num_paths in num_paths_list: call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_CALL, 1000000, "USD") value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) start = time.time() value_mc = call_option.value_mc(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model, num_paths) end = time.time() duration = end - start testCases.print(num_paths, value, value_mc) ########################################################################## spot_fx_rates = np.arange(100, 200, 10) spot_fx_rates = spot_fx_rates / 100.0 num_paths = 100000 testCases.header("NUMPATHS", "CALL_VALUE_BS", "CALL_VALUE_MC") for spot_fx_rate in spot_fx_rates: call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_CALL, 1000000, "USD") value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) start = time.time() value_mc = call_option.value_mc(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model, num_paths) end = time.time() duration = end - start testCases.print(num_paths, value, value_mc) ########################################################################## spot_fx_rates = np.arange(100, 200, 10) / 100.0 num_paths = 100000 testCases.header("SPOT FX RATE", "PUT_VALUE_BS", "PUT_VALUE_MC") for spot_fx_rate in spot_fx_rates: put_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_PUT, 1000000, "USD") value = put_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) start = time.time() value_mc = put_option.value_mc(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model, num_paths) end = time.time() duration = end - start testCases.print(spot_fx_rate, value, value_mc) ########################################################################## spot_fx_rates = np.arange(100, 200, 10) / 100.0 testCases.header("SPOT FX RATE", "CALL_VALUE_BS", "DELTA_BS", "VEGA_BS", "THETA_BS", "RHO_BS") for spot_fx_rate in spot_fx_rates: call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_CALL, 1000000, "USD") value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) delta = call_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) vega = call_option.vega(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) theta = call_option.theta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) # call_option.rho(valuation_date,stock_price, interest_rate, # dividend_yield, modelType, model_params) rho = 999 testCases.print(spot_fx_rate, value, delta, vega, theta, rho) testCases.header("SPOT FX RATE", "PUT_VALUE_BS", "DELTA_BS", "VEGA_BS", "THETA_BS", "RHO_BS") for spot_fx_rate in spot_fx_rates: put_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_PUT, 1000000, "USD") value = put_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) delta = put_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) vega = put_option.vega(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) theta = put_option.theta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) # put_option.rho(valuation_date,stock_price, interest_rate, dividend_yield, # modelType, model_params) rho = 999 testCases.print(spot_fx_rate, value, delta, vega, theta, rho) ########################################################################## testCases.header("SPOT FX RATE", "VALUE_BS", "VOL_IN", "IMPLD_VOL") spot_fx_rates = np.arange(100, 200, 10) / 100.0 for spot_fx_rate in spot_fx_rates: call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_CALL, 1000000, "USD") value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] impliedVol = call_option.implied_volatility(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, value) testCases.print(spot_fx_rate, value, volatility, impliedVol)
def test_FinFXOptionSABR(): # UNFINISHED # There is no FXAmericanOption class. It is embedded in the FXVanillaOption # class. This test just compares it to the European valuation_date = Date(13, 2, 2018) expiry_date = Date(13, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR ccy1CCRate = 0.030 # EUR ccy2CCRate = 0.025 # USD spot_fx_rate = 1.20 strike_fx_rate = 1.250 volatility = 0.10 notional = 1000000.0 dom_discount_curve = DiscountCurveFlat(valuation_date, ccy2CCRate) for_discount_curve = DiscountCurveFlat(valuation_date, ccy1CCRate) model = BlackScholes(volatility) # Two examples to show that changing the notional currency and notional # keeps the value unchanged notional = 1000000.0 spot_fx_rates = np.arange(50, 200, 10)/100.0 testCases.header("OPTION", "FX_RATE", "VALUE_BS", "VOL_IN", "DIFF") for spot_fx_rate in spot_fx_rates: call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_CALL, notional, "USD") valueEuropean = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.AMERICAN_CALL, 1000000, "USD") valueAmerican = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] diff = (valueAmerican - valueEuropean) testCases.print("CALL:", "%9.6f" % spot_fx_rate, "%9.7f" % valueEuropean, "%9.7f" % valueAmerican, "%9.7f" % diff) testCases.header("OPTION", "FX_RATE", "VALUE_BS", "VOL_IN", "DIFF") for spot_fx_rate in spot_fx_rates: call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_PUT, 1000000, "USD") valueEuropean = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.AMERICAN_PUT, 1000000, "USD") valueAmerican = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] diff = (valueAmerican - valueEuropean) testCases.print("PUT:", "%9.6f" % spot_fx_rate, "%9.7f" % valueEuropean, "%9.7f" % valueAmerican, "%9.7f" % diff)
def test_FinFXAmericanOption(): # There is no FXAmericanOption class. It is embedded in the FXVanillaOption # class. This test just compares it to the European valuation_date = Date(13, 2, 2018) expiry_date = Date(13, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR ccy1 = "EUR" ccy2 = "USD" ccy1CCRate = 0.030 # EUR ccy2CCRate = 0.025 # USD currency_pair = ccy1 + ccy2 # Always ccy1ccy2 spot_fx_rate = 1.20 strike_fx_rate = 1.250 volatility = 0.10 dom_discount_curve = DiscountCurveFlat(valuation_date, ccy2CCRate) for_discount_curve = DiscountCurveFlat(valuation_date, ccy1CCRate) model = BlackScholes(volatility) # Two examples to show that changing the notional currency and notional # keeps the value unchanged testCases.header("SPOT FX RATE", "VALUE_BS", "VOL_IN", "IMPLD_VOL") spot_fx_rates = np.arange(50, 200, 10) / 100.0 for spot_fx_rate in spot_fx_rates: call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_CALL, 1000000, "USD") valueEuropean = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.AMERICAN_CALL, 1000000, "USD") valueAmerican = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] diff = (valueAmerican - valueEuropean) testCases.print(spot_fx_rate, valueEuropean, valueAmerican, diff) for spot_fx_rate in spot_fx_rates: call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.EUROPEAN_PUT, 1000000, "USD") valueEuropean = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] call_option = FXVanillaOption(expiry_date, strike_fx_rate, "EURUSD", OptionTypes.AMERICAN_PUT, 1000000, "USD") valueAmerican = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model)['v'] diff = (valueAmerican - valueEuropean) testCases.print(spot_fx_rate, valueEuropean, valueAmerican, diff)
def test_FinFXVanillaOptionWystupExample1(): # Example from Book extract by Uwe Wystup with results in Table 1.2 # https://mathfinance.com/wp-content/uploads/2017/06/FXOptionsStructuredProducts2e-Extract.pdf # Not exactly T=1.0 but close so don't exact exact agreement # (in fact I do not get exact agreement even if I do set T=1.0) valuation_date = Date(13, 2, 2018) expiry_date = Date(13, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR ccy1 = "EUR" ccy2 = "USD" ccy1CCRate = 0.030 # EUR ccy2CCRate = 0.025 # USD currency_pair = ccy1 + ccy2 # Always ccy1ccy2 spot_fx_rate = 1.20 strike_fx_rate = 1.250 volatility = 0.10 notional = 1000000.0 dom_discount_curve = DiscountCurveFlat(valuation_date, ccy2CCRate) for_discount_curve = DiscountCurveFlat(valuation_date, ccy1CCRate) model = BlackScholes(volatility) # Two examples to show that changing the notional currency and notional # keeps the value unchanged notional = 1000000.0 call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_CALL, notional, "EUR", 2) value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) notional = 1250000.0 call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_CALL, notional, "USD", 2) value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) assert round(value['v'], 4) == 0.0251 assert round(value['cash_dom'], 4) == 25125.1772 assert round(value['cash_for'], 4) == 20937.6477 assert round(value['pips_dom'], 4) == 0.0251 assert round(value['pips_for'], 4) == 0.0168 assert round(value['pct_dom'], 4) == 0.0201 assert round(value['pct_for'], 4) == 0.0209 assert round(value['not_dom'], 4) == 1250000.0 assert round(value['not_for'], 4) == 1000000.0 assert value['ccy_dom'] == 'USD' assert value['ccy_for'] == 'EUR' delta = call_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) assert round(delta['pips_spot_delta'], 4) == 0.3315 assert round(delta['pips_fwd_delta'], 4) == 0.3416 assert round(delta['pct_spot_delta_prem_adj'], 4) == 0.3105 assert round(delta['pct_fwd_delta_prem_adj'], 4) == 0.3200
def test_FinFXVanillaOptionBloombergExample(): # Example Bloomberg Pricing at # https://stackoverflow.com/questions/48778712/fx-vanilla-call-price-in-quantlib-doesnt-match-bloomberg valuation_date = Date(13, 2, 2018) expiry_date = Date(15, 2, 2019) # In BS the FX rate is the price in domestic of one unit of foreign # In case of EURUSD = 1.3 the domestic currency is USD and foreign is EUR # DOM = USD , FOR = EUR forName = "EUR" domName = "USD" forDepoRate = 0.05 # EUR domDepoRate = 0.02 # USD currency_pair = forName + domName # Always FORDOM spot_fx_rate = 1.30 strike_fx_rate = 1.3650 volatility = 0.20 spot_days = 0 settlement_date = valuation_date.add_weekdays(spot_days) maturity_date = settlement_date.add_months(12) notional = 1000000.0 notional_currency = "EUR" calendar_type = CalendarTypes.TARGET depos = [] fras = [] swaps = [] depo = IborDeposit(settlement_date, maturity_date, domDepoRate, DayCountTypes.ACT_360, notional, calendar_type) depos.append(depo) dom_discount_curve = IborSingleCurve(valuation_date, depos, fras, swaps) depos = [] fras = [] swaps = [] depo = IborDeposit(settlement_date, maturity_date, forDepoRate, DayCountTypes.ACT_360, notional, calendar_type) depos.append(depo) for_discount_curve = IborSingleCurve(valuation_date, depos, fras, swaps) model = BlackScholes(volatility) call_option = FXVanillaOption(expiry_date, strike_fx_rate, currency_pair, OptionTypes.EUROPEAN_CALL, notional, notional_currency, 2) value = call_option.value(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) assert round(value['v'], 4) == 0.0601 assert round(value['cash_dom'], 4) == 60145.5078 assert round(value['cash_for'], 4) == 46265.7752 assert round(value['pips_dom'], 4) == 0.0601 assert round(value['pips_for'], 4) == 0.0339 assert round(value['pct_dom'], 4) == 0.0441 assert round(value['pct_for'], 4) == 0.0463 assert round(value['not_dom'], 4) == 1365000.0 assert round(value['not_for'], 4) == 1000000.0 assert value['ccy_dom'] == 'USD' assert value['ccy_for'] == 'EUR' delta = call_option.delta(valuation_date, spot_fx_rate, dom_discount_curve, for_discount_curve, model) assert round(delta['pips_spot_delta'], 4) == 0.3671 assert round(delta['pips_fwd_delta'], 4) == 0.3859 assert round(delta['pct_spot_delta_prem_adj'], 4) == 0.3208 assert round(delta['pct_fwd_delta_prem_adj'], 4) == 0.3373