示例#1
0
def rdNumber(img, tval=160, ex=2, ms=1.0,mx=3, dz = 60):
    
    '''
    analyse the img and pass a likely set of features to qnumb for
    interpretation
    '''
    global db, tfile
    fz = 0; h= 0; v = 0;
    tgrp = [] ;numb = []
    dx = dz     
    
    print '-----rdNumber   tval',tval,' ex',ex,'ms', ms, 'mxsize', mx 
    
    fs,mask = findBlobs(img, ms, mx ,ex, db,tval=tval )
    if not fs:
        if db: print ' no features found'
        cvs(db,img,'nothing in rdnumbr')
        return ([0,0,0,0],0,0)
    else:
#       fs = sorted(fs, key = lambda cnt: tuple(cnt[cnt[:,:,0].argmin()][0]))
        fs = sorted(fs, key = lambda cnt:cv2.contourArea(cnt))
        cv2.drawContours( img, fs, -1, (0, 0, 255), 5 )      
   
        rmx = cv2.contourArea(fs[0])        #  left most area
        rmn = rmx         
        fz = 0        
        fs = sorted(fs, key = lambda cnt: tuple(cnt[cnt[:,:,0].argmin()][0]))
        # sorted left to right
        for ix, f   in enumerate( fs):
            x,y,w,h = cv2.boundingRect(f)                       
            #fx = x 
            if cv2.contourArea(f) < rmn: rmn = cv2.contourArea(f)
            if cv2.contourArea(f) > rmx: rmx = cv2.contourArea(f)
            xd = x - fz        # xd is horizontal dist between blobs  
            if xd > dx:         #   dx is parm   here is where the number is detected
                numb.append(qnumb(tgrp,mask))  #,mask,img))    #  process the number
                tnumb(tgrp,img)      # black rectangle and training output
                tgrp = []                                 # start a new group 
            if db: print    'ix {} w {} h {} dx {} xd {} area {}'\
                      .format(ix,w,h,dx,xd,cv2.contourArea(f))                               
            tgrp.append(f)
##            cv2.drawContours( img, [f], 0, (0, 255, 255), 5 ) 
##            cvs(db,img)
            fz = x
        numb.append(qnumb(tgrp,mask))  #,mask,img))      # process the last group
        tnumb(tgrp,img )
        
        print 'last numb', numb
        tpat = numb 
        if  all(i == 'p' for i in tpat):
             return([0,0,0,0],rmx,rmn)     #    nfg return True zero
        if len(tpat)>3:
            while tpat[-1] == 'p':
                tpat.pop()
               
            while( tpat[0] == 'p'):
                tpat.pop(0)
      #  if db: cpause(['end rd',tpat],Gd)
        if 'p' in tpat:
            return([0,0,0,0],rmx,rmn)     #    nfg return True zero
        else:             
            return(tpat,rmx,rmn) # maybe good numeric value
示例#2
0
cv2.createTrackbar('min','image',0,100,nothing)
cv2.createTrackbar('max','image',0,1000,nothing)
cv2.createTrackbar('tval','image',0,255,nothing)
cv2.createTrackbar('erd','image',0,20,nothing)
while(1):
    cv2.imshow('image',imgx)
    k = cv2.waitKey(1) & 0xFF
    if k == 27:
        cvd()
        break
    if k == ord('s'):
        fil = "img3c.png"
        fil = 'fatTest.png'
        db = False
        img  = cv2.imread(fil)
        blobs = findBlobs(img,ms,mx,erd,db,tval)      # 500 3000 2 160
        if blobs is not None :
            print '{} blobs found  '.format(len(blobs))
            for i,f in enumerate (blobs):
                if i > 20: break
                cv2.drawContours(img,[f],0,(0,0,0),2)
                cvs(0,img,'contours')
           
        else: print 'no blobs found',

    ms = cv2.getTrackbarPos('min','image')
    mx = cv2.getTrackbarPos('max','image')
    erd = cv2.getTrackbarPos('erd','image')
    tval = cv2.getTrackbarPos('tval','image')

cv2.destroyAllWindows()