def compare_strategy_vs_benchmark(self, br, strategy_df, benchmark_df): """ compare_strategy_vs_benchmark - Compares the trading strategy we are backtesting against a benchmark Parameters ---------- br : BacktestRequest Parameters for backtest such as start and finish dates strategy_df : pandas.DataFrame Strategy time series benchmark_df : pandas.DataFrame Benchmark time series """ include_benchmark = False calc_stats = False if hasattr(br, 'include_benchmark'): include_benchmark = br.include_benchmark if hasattr(br, 'calc_stats'): calc_stats = br.calc_stats if include_benchmark: ret_stats = RetStats() risk_engine = RiskEngine() filter = Filter() calculations = Calculations() # align strategy time series with that of benchmark strategy_df, benchmark_df = strategy_df.align(benchmark_df, join='left', axis = 0) # if necessary apply vol target to benchmark (to make it comparable with strategy) if hasattr(br, 'portfolio_vol_adjust'): if br.portfolio_vol_adjust is True: benchmark_df = risk_engine.calculate_vol_adjusted_index_from_prices(benchmark_df, br = br) # only calculate return statistics if this has been specified (note when different frequencies of data # might underrepresent vol # if calc_stats: benchmark_df = benchmark_df.fillna(method='ffill') ret_stats.calculate_ret_stats_from_prices(benchmark_df, br.ann_factor) if calc_stats: benchmark_df.columns = ret_stats.summary() # realign strategy & benchmark strategy_benchmark_df = strategy_df.join(benchmark_df, how='inner') strategy_benchmark_df = strategy_benchmark_df.fillna(method='ffill') strategy_benchmark_df = filter.filter_time_series_by_date(br.plot_start, br.finish_date, strategy_benchmark_df) strategy_benchmark_df = calculations.create_mult_index_from_prices(strategy_benchmark_df) self._benchmark_pnl = benchmark_df self._benchmark_ret_stats = ret_stats return strategy_benchmark_df return strategy_df
def calculate_trading_PnL(self, br, asset_a_df, signal_df): """ calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later Parameters ---------- br : BacktestRequest Parameters for the backtest specifying start date, finish data, transaction costs etc. asset_a_df : pandas.DataFrame Asset prices to be traded signal_df : pandas.DataFrame Signals for the trading strategy """ calculations = Calculations() # signal_df.to_csv('e:/temp0.csv') # make sure the dates of both traded asset and signal are aligned properly asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis='index') # only allow signals to change on the days when we can trade assets signal_df = signal_df.mask(numpy.isnan( asset_df.values)) # fill asset holidays with NaN signals signal_df = signal_df.fillna(method='ffill') # fill these down asset_df = asset_df.fillna(method='ffill') # fill down asset holidays returns_df = calculations.calculate_returns(asset_df) tc = br.spot_tc_bp signal_cols = signal_df.columns.values returns_cols = returns_df.columns.values pnl_cols = [] for i in range(0, len(returns_cols)): pnl_cols.append(returns_cols[i] + " / " + signal_cols[i]) # do we have a vol target for individual signals? if hasattr(br, 'signal_vol_adjust'): if br.signal_vol_adjust is True: risk_engine = RiskEngine() if not (hasattr(br, 'signal_vol_resample_type')): br.signal_vol_resample_type = 'mean' if not (hasattr(br, 'signal_vol_resample_freq')): br.signal_vol_resample_freq = None leverage_df = risk_engine.calculate_leverage_factor( returns_df, br.signal_vol_target, br.signal_vol_max_leverage, br.signal_vol_periods, br.signal_vol_obs_in_year, br.signal_vol_rebalance_freq, br.signal_vol_resample_freq, br.signal_vol_resample_type) signal_df = pandas.DataFrame(signal_df.values * leverage_df.values, index=signal_df.index, columns=signal_df.columns) self._individual_leverage = leverage_df # contains leverage of individual signal (before portfolio vol target) _pnl = calculations.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc=tc) _pnl.columns = pnl_cols # portfolio is average of the underlying signals: should we sum them or average them? if hasattr(br, 'portfolio_combination'): if br.portfolio_combination == 'sum': portfolio = pandas.DataFrame(data=_pnl.sum(axis=1), index=_pnl.index, columns=['Portfolio']) elif br.portfolio_combination == 'mean': portfolio = pandas.DataFrame(data=_pnl.mean(axis=1), index=_pnl.index, columns=['Portfolio']) else: portfolio = pandas.DataFrame(data=_pnl.mean(axis=1), index=_pnl.index, columns=['Portfolio']) portfolio_leverage_df = pandas.DataFrame(data=numpy.ones( len(_pnl.index)), index=_pnl.index, columns=['Portfolio']) # should we apply vol target on a portfolio level basis? if hasattr(br, 'portfolio_vol_adjust'): if br.portfolio_vol_adjust is True: risk_engine = RiskEngine() portfolio, portfolio_leverage_df = risk_engine.calculate_vol_adjusted_returns( portfolio, br=br) self._portfolio = portfolio self._signal = signal_df # individual signals (before portfolio leverage) self._portfolio_leverage = portfolio_leverage_df # leverage on portfolio # multiply portfolio leverage * individual signals to get final position signals length_cols = len(signal_df.columns) leverage_matrix = numpy.repeat( portfolio_leverage_df.values.flatten()[numpy.newaxis, :], length_cols, 0) # final portfolio signals (including signal & portfolio leverage) self._portfolio_signal = pandas.DataFrame(data=numpy.multiply( numpy.transpose(leverage_matrix), signal_df.values), index=signal_df.index, columns=signal_df.columns) if hasattr(br, 'portfolio_combination'): if br.portfolio_combination == 'sum': pass elif br.portfolio_combination == 'mean': self._portfolio_signal = self._portfolio_signal / float( length_cols) else: self._portfolio_signal = self._portfolio_signal / float( length_cols) self._pnl = _pnl # individual signals P&L # TODO FIX very slow - hence only calculate on demand _pnl_trades = None # _pnl_trades = calculations.calculate_individual_trade_gains(signal_df, _pnl) self._pnl_trades = _pnl_trades self._ret_stats_pnl = RetStats() self._ret_stats_pnl.calculate_ret_stats(self._pnl, br.ann_factor) self._portfolio.columns = ['Port'] self._ret_stats_portfolio = RetStats() self._ret_stats_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor) self._cumpnl = calculations.create_mult_index( self._pnl) # individual signals cumulative P&L self._cumpnl.columns = pnl_cols self._cumportfolio = calculations.create_mult_index( self._portfolio) # portfolio cumulative P&L self._cumportfolio.columns = ['Port']
contract_type='european-put', strike='10d-otm', position_multiplier=1.0) # Add transaction costs to the option index (bid/ask bp for the option premium and spot FX) df_cuemacro_option_put_tc = fx_options_curve.apply_tc_signals_to_total_return_index( cross, df_cuemacro_option_put_tot, option_tc_bp=5, spot_tc_bp=2) # Get total returns for spot df_bbg_tot = df_tot # from earlier! df_bbg_tot.columns = [x + '-bbg' for x in df_bbg_tot.columns] # Calculate a hedged portfolio of spot + 2*options (can we reduce drawdowns?) calculations = Calculations() ret_stats = RetStats() df_hedged = calculations.join([ df_bbg_tot[cross + '-tot.close-bbg'].to_frame(), df_cuemacro_option_put_tc[cross + '-option-tot-with-tc.close'].to_frame() ], how='outer') df_hedged = df_hedged.fillna(method='ffill') df_hedged = df_hedged.pct_change() df_hedged['Spot + 2*option put hedge'] = df_hedged[ cross + '-tot.close-bbg'] + df_hedged[cross + '-option-tot-with-tc.close'] df_hedged.columns = RetStats(returns_df=df_hedged,