示例#1
0
    def run_strategy_returns_stats(self, trading_model):
        """
        run_strategy_returns_stats - Plots useful statistics for the trading strategy (using PyFolio)

        Parameters
        ----------
        trading_model : TradingModel
            defining trading strategy

        """

        pnl = trading_model.get_strategy_pnl()
        tz = Timezone()
        calculations = Calculations()

        # PyFolio assumes UTC time based DataFrames (so force this localisation)
        try:
            pnl = tz.localise_index_as_UTC(pnl)
        except:
            pass

        # set the matplotlib style sheet & defaults
        # at present this only works in Matplotlib engine
        try:
            matplotlib.rcdefaults()
            plt.style.use(
                ChartConstants().chartfactory_style_sheet['chartpy-pyfolio'])
        except:
            pass

        # TODO for intraday strategies, make daily

        # convert DataFrame (assumed to have only one column) to Series
        pnl = calculations.calculate_returns(pnl)
        pnl = pnl.dropna()
        pnl = pnl[pnl.columns[0]]
        fig = pf.create_returns_tear_sheet(pnl, return_fig=True)

        try:
            plt.savefig(trading_model.DUMP_PATH + "stats.png")
        except:
            pass

        plt.show()
示例#2
0
    def run_strategy_returns_stats(self,
                                   trading_model,
                                   index=None,
                                   engine='finmarketpy'):
        """Plots useful statistics for the trading strategy using various backends

        Parameters
        ----------
        trading_model : TradingModel
            defining trading strategy

        engine : str
            'pyfolio' - use PyFolio as a backend
            'finmarketpy' - use finmarketpy as a backend

        index: DataFrame
            define strategy by a time series

        """

        if index is None:
            pnl = trading_model.strategy_pnl()
        else:
            pnl = index

        tz = Timezone()
        calculations = Calculations()

        if engine == 'pyfolio':
            # PyFolio assumes UTC time based DataFrames (so force this localisation)
            try:
                pnl = tz.localise_index_as_UTC(pnl)
            except:
                pass

            # set the matplotlib style sheet & defaults
            # at present this only works in Matplotlib engine
            try:
                matplotlib.rcdefaults()
                plt.style.use(ChartConstants().
                              chartfactory_style_sheet['chartpy-pyfolio'])
            except:
                pass

            # TODO for intraday strategies, make daily

            # convert DataFrame (assumed to have only one column) to Series
            pnl = calculations.calculate_returns(pnl)
            pnl = pnl.dropna()
            pnl = pnl[pnl.columns[0]]
            fig = pf.create_returns_tear_sheet(pnl, return_fig=True)

            try:
                plt.savefig(trading_model.DUMP_PATH + "stats.png")
            except:
                pass

            plt.show()
        elif engine == 'finmarketpy':

            # assume we have TradingModel
            # to do to take in a time series
            from chartpy import Canvas, Chart

            # temporarily make scale factor smaller so fits the window
            old_scale_factor = trading_model.SCALE_FACTOR
            trading_model.SCALE_FACTOR = 0.75

            pnl = trading_model.plot_strategy_pnl(
                silent_plot=True)  # plot the final strategy
            individual = trading_model.plot_strategy_group_pnl_trades(
                silent_plot=True)  # plot the individual trade P&Ls

            pnl_comp = trading_model.plot_strategy_group_benchmark_pnl(
                silent_plot=True
            )  # plot all the cumulative P&Ls of each component
            ir_comp = trading_model.plot_strategy_group_benchmark_pnl_ir(
                silent_plot=True)  # plot all the IR of each component

            leverage = trading_model.plot_strategy_leverage(
                silent_plot=True)  # plot the leverage of the portfolio
            ind_lev = trading_model.plot_strategy_group_leverage(
                silent_plot=True)  # plot all the individual leverages

            canvas = Canvas([[pnl, individual], [pnl_comp, ir_comp],
                             [leverage, ind_lev]])

            canvas.generate_canvas(
                page_title=trading_model.FINAL_STRATEGY + ' Return Statistics',
                silent_display=False,
                canvas_plotter='plain',
                output_filename=trading_model.FINAL_STRATEGY + ".html",
                render_pdf=False)

            trading_model.SCALE_FACTOR = old_scale_factor
示例#3
0
    def run_strategy_returns_stats(self, trading_model, index = None, engine = 'pyfolio'):
        """Plots useful statistics for the trading strategy (using PyFolio)

        Parameters
        ----------
        trading_model : TradingModel
            defining trading strategy
        index: DataFrame
            define strategy by a time series

        """

        if index is None:
            pnl = trading_model.get_strategy_pnl()
        else:
            pnl = index

        tz = Timezone()
        calculations = Calculations()

        if engine == 'pyfolio':
            # PyFolio assumes UTC time based DataFrames (so force this localisation)
            try:
                pnl = tz.localise_index_as_UTC(pnl)
            except: pass

            # set the matplotlib style sheet & defaults
            # at present this only works in Matplotlib engine
            try:
                matplotlib.rcdefaults()
                plt.style.use(ChartConstants().chartfactory_style_sheet['chartpy-pyfolio'])
            except: pass

            # TODO for intraday strategies, make daily

            # convert DataFrame (assumed to have only one column) to Series
            pnl = calculations.calculate_returns(pnl)
            pnl = pnl.dropna()
            pnl = pnl[pnl.columns[0]]
            fig = pf.create_returns_tear_sheet(pnl, return_fig=True)

            try:
                plt.savefig (trading_model.DUMP_PATH + "stats.png")
            except: pass

            plt.show()
        elif engine == 'finmarketpy':

            # assume we have TradingModel
            # to do to take in a time series
            from chartpy import Canvas, Chart
            pnl = trading_model.plot_strategy_pnl(silent_plot=True)                         # plot the final strategy
            individual = trading_model.plot_strategy_group_pnl_trades(silent_plot=True)     # plot the individual trade P&Ls

            pnl_comp = trading_model.plot_strategy_group_benchmark_pnl(silent_plot=True)    # plot all the cumulative P&Ls of each component
            ir_comp = trading_model.plot_strategy_group_benchmark_pnl_ir(silent_plot=True)  # plot all the IR of each component

            leverage = trading_model.plot_strategy_leverage(silent_plot=True)               # plot the leverage of the portfolio
            ind_lev = trading_model.plot_strategy_group_leverage(silent_plot=True)          # plot all the individual leverages

            canvas = Canvas([[pnl, individual],
                             [pnl_comp, ir_comp],
                             [leverage, ind_lev]]
                             )

            canvas.generate_canvas(silent_display=False, canvas_plotter='plain')