codes = Sectoring(sql, f"bea{vintage}", fillna='') naics = pstat.build_lookup('lpermno', 'naics', fillna=0) caps, counts, rets = [], [], [] for year in years: date = bd.endyr(year - 1) univ = crsp.get_universe(date) univ['bea'] = codes[naics(univ.index, date)] univ = univ[univ['bea'].ne('')] grouped = univ.groupby('bea') caps.append(grouped['cap'].sum().rename(year)) counts.append(grouped['cap'].count().rename(year)) months = bd.date_range(date, bd.endyr(year), 'endmo') for rebaldate, end in zip(months[:-1], months[1:]): r = pd.concat([crsp.get_ret(bd.begmo(end), end), crsp.get_cap(rebaldate, use_permco=False), univ['bea']], axis=1, join='inner').dropna() grp = r.groupby('bea') # industry ret is sum of weighted rets r['wtdret'] = r['ret'].mul(r['cap'].div(grp['cap'].transform('sum'))) rets.append(grp['wtdret'].sum(min_count=1).rename(end)) print(end, len(r), r['wtdret'].sum() / len(grp)) # collect and average market caps, counts and returns caps = pd.concat(caps, axis=1).mean(axis=1) # average cap over years counts = pd.concat(counts, axis=1).mean(axis=1) # average count rets = pd.concat(rets, axis=1) # create node variables: count and cap (will take logs of) nodevars = pd.concat([caps.rename('cap'), counts.rename('count')], axis=1) rets = rets.T[nodevars.index] # ensure same order of industries n = len(nodevars.index)
print(ls.get_robustcov_results('HC0').summary()) print(ls.get_robustcov_results('HAC', maxlags=3).summary()) print( ls.get_robustcov_results('hac-panel', groups=rets['port'], maxlags=3).summary()) print(ls.get_robustcov_results('cluster', groups=rets['port']).summary()) ## Fama MacBeth with individual stocks and standardized scores as loadings rebalbeg = 19640601 rebalend = LAST_DATE rebaldates = crsp.bd.date_range(rebalbeg, rebalend, 'endmo') loadings = dict() for pordate in rebaldates: # retrieve signal values every month date = bd.june_universe(pordate) univ = crsp.get_universe(date) cap = np.sqrt(crsp.get_cap(date)['cap']) smb = -np.log(cap).rename('size') hml = signals('hml', date, bd.endmo(date, -12))['hml'].rename('value') beta = (signals('beta', pordate, bd.begmo(pordate))['beta'] * 2 / 3) + (1 / 3) mom = signals('mom', pordate)['mom'].rename('momentum') df = pd.concat( (beta, hml, smb, mom), # inner join of signals with univ join='inner', axis=1).reindex(univ.index).dropna() loadings[pordate] = winsorized(df, quantiles=[0.05, 0.95]) ## Compute coefficients from FM cross-sectional regressions riskpremium = RiskPremium(user, bench, 'RF', LAST_DATE) riskpremium( crsp,
df[label] = np.where(df[label].isna(), df['pstk'], df[label]) df[label] = np.where(df[label].isna(), 0, df[label]) df[label] = df['seq'] + df['txditc'].fillna(0) - df[label] df.dropna(subset=[label], inplace=True) df = df[df[label] > 0][['permno', 'gvkey', 'datadate', label]] ## years in Compustat df = df.sort_values(by=['gvkey', 'datadate']) df['count'] = df.groupby(['gvkey']).cumcount() ## construct b/m ratio df['rebaldate'] = 0 for datadate in sorted(df['datadate'].unique()): f = df['datadate'].eq(datadate) df.loc[f, 'rebaldate'] = crsp.bd.endmo(datadate, abs(lag)) # 6 month lag df.loc[f, 'cap'] = crsp.get_cap(crsp.bd.endyr(datadate))\ .reindex(df.loc[f, 'permno']).values # Dec mktcap print(datadate, sum(f)) df[label] /= df['cap'] df = df[df[label].gt(0) & df['count'].gt(1)] # 2+ years in Compustat ## compute HML portfolio holdings signals = chunk_signal(df) holdings = famafrench_sorts(crsp, 'hml', signals, rebalbeg, LAST_DATE, window=12, months=[6], rebals=rebals)['holdings']
""" - same year filings [yr]0101:[yr]1231 = bd.begyr(caldate) to caldate - lagged [yr+1]0401:[yr+2]0331 = bd.begmo(caldate,4) - bd.endmo(caldate,15) """ for ifig, key in enumerate(['mdasent', 'mdachg', 'mdacos']): ret1 = {} # to collect year-ahead spread returns ret0 = {} # to collect current-year spread returns for year in sorted(np.unique(data['year'])): # loop over years # compute current year spread returns beg = bd.begyr(year) end = bd.endyr(year) univ = data[data['year'] == year]\ .dropna(subset=[key])\ .set_index('permno')\ .join(crsp.get_cap(bd.offset(beg, -1)), how='inner')\ .join(crsp.get_ret(beg, end, delist=True), how='left') if len(univ): sub = fractiles(univ[key], [20, 80]) pos = weighted_average(univ.loc[sub == 1, ['cap', 'ret']], 'cap')['ret'] neg = weighted_average(univ.loc[sub == 3, ['cap', 'ret']], 'cap')['ret'] ret0[end] = { 'ret': pos - neg, 'npos': sum(sub == 1), 'nneg': sum(sub == 3) } if ECHO: print(end, len(univ), pos, neg)