# use 20& of the training set for validation train_X, val_X, train_y, val_y = train_test_split(train_X, train_y, test_size=0.2, random_state=0) # model model = deepmoji_architecture(nb_classes=nb_classes, nb_tokens=nb_tokens, maxlen=MAX_LEN, embed_dropout_rate=0.25, final_dropout_rate=0.5, embed_l2=1E-6) model.summary() # load pretrained representation model load_specific_weights(model, model_path, nb_tokens, MAX_LEN, exclude_names=["softmax"]) # train model model, acc = finetune(model, [train_X, val_X, test_X], [train_y, val_y, test_y], nb_classes, 100, method="chain-thaw", verbose=2) pred_y_prob = model.predict(test_X) if nb_classes == 2: pred_y = [0 if p < 0.5 else 1 for p in pred_y_prob] else: pred_y = np.argmax(pred_y_prob, axis=1) # evaluation print("*****************************************") print("Fold %d" % fold) accuracy = accuracy_score(test_y, pred_y) print("Accuracy: %.3f" % accuracy) precision = precision_score(test_y, pred_y, average=None)
def selftrain(model_name_or_path, train_file, infer_file, output_dir, **kwargs): """Self-training a pre-trained model on a downstream task. Args: model_name_or_path: Path to pretrained model or model identifier from huggingface.co/models. train_file: A csv or a json file containing the training data. infer_file: A csv or a json file containing the data to predict on. output_dir: The output directory where the model predictions and checkpoints will be written. **kwargs: Dictionary of key/value pairs with which to update the configuration object after loading. The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. """ # Initialize the accelerator. We will let the accelerator handle device # placement for us. accelerator = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel( logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() model_args = STModelArguments(model_name_or_path=model_name_or_path) data_args = STDataArguments(train_file=train_file, infer_file=infer_file) training_args = STTrainingArguments(output_dir=output_dir) args = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(arg_class).items(): setattr(args, key, value) for key, value in kwargs.items(): if hasattr(args, key): setattr(args, key, value) # Sanity checks data_files = {} args.data_file_extension = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None data_files['train'] = args.train_file data_files['infer'] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None data_files['eval'] = args.eval_file for key in data_files: extension = data_files[key].split('.')[-1] assert extension in ['csv', 'json' ], f'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: args.data_file_extension = extension else: assert ( extension == args.data_file_extension ), f'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), f'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) logger.info('Creating the initial data directory for self-training...') data_dir_format = f'{args.output_dir}/self-train_iter-{{}}'.format initial_data_dir = data_dir_format(0) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) os.makedirs(initial_data_dir, exist_ok=True) accelerator.wait_for_everyone() best_iteration = None best_eval_result = None early_stopping_patience_counter = 0 should_training_stop = False # Show the progress bar progress_bar = tqdm(range(args.max_selftrain_iterations), disable=not accelerator.is_local_main_process) # Self-train for iteration in range(0, int(args.max_selftrain_iterations)): current_data_dir = data_dir_format(iteration) assert os.path.exists(current_data_dir) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 current_output_dir = os.path.join(current_data_dir, 'stage-1') arguments_dict = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(training_args, key): arguments_dict.update({key: value}) model_bin_file_path = os.path.join(current_output_dir, 'best-checkpoint', MODEL_BIN_FILE) if os.path.exists(model_bin_file_path): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.', model_bin_file_path, iteration) else: logger.info( '***** Running self-training: iteration: %d, stage: 1 *****', iteration) finetune(**arguments_dict) accelerator.wait_for_everyone() assert os.path.exists(model_bin_file_path) logger.info( 'Self-training job completed: iteration: %d, stage: 1.', iteration) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data model_path = os.path.join(current_output_dir, 'best-checkpoint') current_output_dir = os.path.join(current_data_dir, 'stage-2') # Update arguments_dict arguments_dict['model_name_or_path'] = model_path arguments_dict['train_file'] = data_files['train'] arguments_dict['output_dir'] = current_output_dir model_bin_file_path = os.path.join(current_output_dir, 'best-checkpoint', MODEL_BIN_FILE) if os.path.exists(model_bin_file_path): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.', model_bin_file_path, iteration) else: logger.info( '***** Running self-training: iteration: %d, stage: 2 *****', iteration) finetune(**arguments_dict) accelerator.wait_for_everyone() assert os.path.exists(model_bin_file_path) logger.info( 'Self-training job completed: iteration: %d, stage: 2.', iteration) new_iteration = iteration next_data_dir = data_dir_format(iteration + 1) config = AutoConfig.from_pretrained( os.path.join(current_output_dir, 'best-checkpoint')) id2label = config.id2label eval_results_file = os.path.join(current_output_dir, 'eval_results_best-checkpoint.json') test_results_file = os.path.join(current_output_dir, 'test_results_best-checkpoint.json') assert os.path.exists(eval_results_file) with open(eval_results_file, 'r') as f: eval_result = float(json.load(f)[args.eval_metric]) infer_output_file = os.path.join(current_output_dir, 'infer_output_best-checkpoint.csv') assert os.path.exists(infer_output_file) # Loading the dataset from local csv or json files. infer_input = load_dataset(args.data_file_extension, data_files={'data': data_files['infer']})['data'] infer_output = load_dataset('csv', data_files={'data': infer_output_file})['data'] if accelerator.is_main_process: os.makedirs(next_data_dir, exist_ok=True) shutil.copy( eval_results_file, os.path.join(output_dir, f'eval_results_iter-{iteration}.json')) if os.path.exists(test_results_file): shutil.copy( eval_results_file, os.path.join(output_dir, f'test_results_iter-{iteration}.json')) create_pseudo_labeled_data(args, infer_input, infer_output, eval_result, id2label, next_data_dir) accelerator.wait_for_everyone() data_files['train_pseudo'] = os.path.join( next_data_dir, f'train_pseudo.{args.data_file_extension}') if args.evaluation_strategy != IntervalStrategy.NO.value: new_eval_result = eval_result if best_iteration is None: best_iteration = new_iteration best_eval_result = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: best_iteration = new_iteration best_eval_result = new_eval_result early_stopping_patience_counter = 0 else: if new_eval_result == best_eval_result: best_iteration = new_iteration best_eval_result = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: should_training_stop = True progress_bar.update(1) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d', best_iteration) logger.info('Best evaluation result: %s = %f', args.eval_metric, best_eval_result) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(output_dir, f'eval_results_iter-{iteration}.json'), os.path.join(output_dir, 'eval_results_best-iteration.json')) else: # Assume that the last iteration is the best logger.info('Best iteration: %d', args.max_selftrain_iterations - 1) logger.info('Best evaluation result: %s = %f', args.eval_metric, eval_result) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join( output_dir, f'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ), os.path.join(output_dir, 'eval_results_best-iteration.json'))
data.to_csv(DATASET_PATH, sep='\t', index=False) data = pd.read_csv(DATASET_PATH, sep='\t') data = data[:5000] vocab = load_vocab(data) print(len(vocab)) # Load dataset data_tr_cv_ts = load_benchmark(data, vocab) # Set up model and finetune # init model = deepmoji_transfer( nb_classes, data_tr_cv_ts['maxlen']) # from PRETRAINED_PATH load model # print_layer_summary model.summary() # print(len(data_tr_cv_ts['texts'][0][0])) model, acc = finetune(model, data_tr_cv_ts['texts'], data_tr_cv_ts['labels'], nb_classes, data_tr_cv_ts['batch_size'], method='last', epoch_size=5000, nb_epochs=1000, verbose=5) #'last') print('Acc: {}'.format(acc))
import os.path import numpy as np #%% Load Data: Profound in and out. datadir = "OneDrive\Dokumente\Sc_Master\Masterthesis\Project\DomAdapt" X, Y = preprocessing.get_splits(sites=['hyytiala'], years=[2001, 2002, 2003, 2004, 2005, 2006], datadir=os.path.join(datadir, "data"), dataset="profound", simulations=None) #%% pretrained_model = visualizations.losses("mlp", 7, "") running_losses, performance, y_tests, y_preds = finetuning.finetune( X, Y, epochs=100, model="mlp", pretrained_type=7) #%% visualizations.plot_running_losses(running_losses["mae_train"], running_losses["mae_val"], "", "mlp") print(np.mean(np.array(performance), axis=0)) res_mlp = visualizations.losses("mlp", 0, "") #%% import setup.models as models import torch model = models.MLPmod(7, [64, 64, 16, 1], nn.ReLU) model.load_state_dict( torch.load(os.path.join(datadir, f"python\outputs\models\mlp6\model0.pth")))
embed_dropout_rate=0.25, final_dropout_rate=0.5, embed_l2=1E-6) model.summary() # load pretrained representation model load_specific_weights(model, model_path, nb_tokens, MAX_LEN, exclude_names=['softmax']) # train model model, acc = finetune(model, [train_X, val_X, test_X], [train_y, val_y, test_y], nb_classes, 100, method='chain-thaw') pred_y_prob = model.predict(test_X) if nb_classes == 2: pred_y = [0 if p < 0.5 else 1 for p in pred_y_prob] else: pred_y = np.argmax(pred_y_prob, axis=1) # evaluation print('*****************************************') print("Fold %d" % fold) accuracy = accuracy_score(test_y, pred_y) print("Accuracy: %.3f" % accuracy)