def autenticacao(request):
    if request.method == "POST":
        try:
            uploaded_file = request.FILES['biometry']
            fs = FileSystemStorage()
            fs.save("fingerprint.png", uploaded_file)
        except:
            return redirect('home/')

        global username
        username = request.POST['username']

        try:
            Users.objects.filter(username=username).first().username
            print("Username cadastrado no BD")
            try:
                print('Analisando o fingerprint recebido')
                img = cv2.imread('./upload/fingerprint.png',
                                 0)						# read input image
                out = fingerprint_enhancer.enhance_Fingerprint(
                    img)		# enhance the fingerprint image

                print('Analisando o fingerprint cadastrado no BD')
                img2 = cv2.imread('./upload/' + Users.objects.filter(
                    username=username).first().biometry.name, 0)   # read input image
                out2 = fingerprint_enhancer.enhance_Fingerprint(
                    img2)		# enhance the fingerprint image

                result = out == out2

                try:
                    global autenticado
                    if result.all() == True:
                        autenticado = True
                        print("Autenticado!")
                        fs.delete("fingerprint.png")
                        return redirect('home/')
                except:
                    if result == False:
                        autenticado = False
                        print("Falha na autenticação!")
                        fs.delete("fingerprint.png")
                        return redirect('home/')

            except:
                print("Obtivemos um erro ao analisarmos a fingerprint recebida. Por favor, verifique se a fingerprint está no formato JPEG, JPG ou PNG.")
                fs.delete("fingerprint.png")
                return redirect('home/')
        except:
            print("Usuario não cadastrado no BD")
            fs.delete("fingerprint.png")
            return redirect('home/')

    return render(request, 'auth/src/auth.html')
示例#2
0
def get_descriptors(img):
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    img = clahe.apply(img)
    img = fingerprint_enhancer.enhance_Fingerprint(img)
    img = numpy.array(img, dtype=numpy.uint8)

    # Threshold (identify the white black pixel by near method and convert in white or black absolute)
    ret, img = cv2.threshold(
        img, 127, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    # Normalize to 0 and 1 range
    img[img == 255] = 1

    # Harris corners
    harris_corners = cv2.cornerHarris(img, 3, 3, 0.04)
    harris_normalized = cv2.normalize(
        harris_corners, 0, 255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32FC1)
    threshold_harris = _FRONTIER

    # Extract keypoints
    keypoints = []
    for x in range(0, harris_normalized.shape[0]):
        for y in range(0, harris_normalized.shape[1]):
            if harris_normalized[x][y] > threshold_harris:
                keypoints.append(cv2.KeyPoint(y, x, 1))
    # Define descriptor
    orb = cv2.ORB_create()
    # Compute descriptors
    _, des = orb.compute(img, keypoints)
    return (keypoints, des)
示例#3
0
def T_generator(img):
    X = []
    Y = []
    R = []
    T = []
    enhanced_img = enh.enhance_Fingerprint(img)
    features_terminations, features_bifurcations = ext.extract_minutiae_features(
        enhanced_img, showResult=False)
    for termination in features_terminations:
        X.append(termination.locX)
        Y.append(termination.locY)
    for bifurcation in features_bifurcations:
        X.append(bifurcation.locX)
        Y.append(bifurcation.locY)
    n = len(Y)

    for i in range(0, 64):
        R.append(randint(0, 2 * (n - 1)))
    for r in R:
        if r < n:
            T.append((X[r] % 256) - 128)
        else:
            T.append((Y[r - n] % 256) - 128)
    return T
示例#4
0
import cv2
import fingerprint_enhancer		
import os
import tqdm

images = os.listdir('./data/light_data/dataset/train_data')

i = False
for image_name in tqdm.tqdm(images):
    img = cv2.imread('./data/light_data/dataset/train_data/' + image_name, 0)
    try:
        out = fingerprint_enhancer.enhance_Fingerprint(img)
        cv2.imwrite('./data/enhanced/light_data_enhanced/' + image_name, out)
    except:
        pass
示例#5
0
def enhance_and_binarize(img):
    enhanced_img = fingerprint_enhancer.enhance_Fingerprint(img)
    _, binarized_enhanced_img = cv2.threshold(
        enhanced_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    return binarized_enhanced_img