示例#1
0
def test_end2end_cnv_w1a1_fold_and_tlastmarker():
    model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_dataflow_model.onnx")
    fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
    # each tuple is (PE, SIMD, in_fifo_depth) for a layer
    folding = [
        (16, 3, 128),
        (32, 32, 128),
        (16, 32, 128),
        (16, 32, 128),
        (4, 32, 81),
        (1, 32, 2),
        (1, 4, 2),
        (1, 8, 128),
        (5, 1, 3),
    ]
    for fcl, (pe, simd, ififodepth) in zip(fc_layers, folding):
        fcl_inst = getCustomOp(fcl)
        fcl_inst.set_nodeattr("PE", pe)
        fcl_inst.set_nodeattr("SIMD", simd)
        fcl_inst.set_nodeattr("inFIFODepth", ififodepth)

    swg_layers = model.get_nodes_by_op_type("ConvolutionInputGenerator")
    for i in range(len(swg_layers)):
        swg_inst = getCustomOp(swg_layers[i])
        simd = folding[i][1]
        swg_inst.set_nodeattr("SIMD", simd)

    model = model.transform(InsertDWC())
    model = model.transform(InsertFIFO())
    model = model.transform(InsertTLastMarker())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(AnnotateResources("estimate"))
    model.save(build_dir + "/end2end_cnv_w1a1_folded.onnx")
示例#2
0
def step_resnet50_set_fifo_depths(model: ModelWrapper,
                                  cfg: DataflowBuildConfig):
    """
    Depending on the auto_fifo_depths setting, do one of the following:
    * if auto_fifo_depths=True:  Run the `InsertAndSetFIFODepths` transformation
    to attempt to determine the FIFO sizes that provide full throughput. Involves
    running stitched-IP rtlsim and may take a long time.
    * if auto_fifo_depths=False:  Assume the folding config file contains FIFO
    sizes as well. Runs the `InsertFIFO` transformation, then
    `ApplyConfig(cfg.folding_config_file)`, and finally `RemoveShallowFIFOs`.
    Coherency with config file node naming is ensured by calling
    `GiveUniqueNodeNames`.
    """

    if cfg.auto_fifo_depths:
        model = model.transform(
            InsertAndSetFIFODepths(
                cfg._resolve_fpga_part(),
                cfg._resolve_hls_clk_period(),
                vivado_ram_style=cfg.large_fifo_mem_style.value,
            ))
    else:
        # assume folding cfg json contains FIFO sizes too
        # insert DWCs, FIFOs and run ApplyConfig once more
        model = model.transform(InsertDWC())
        # need to make sure all FIFOs are created so that their depth can be
        # set by ApplyConfig, so create_shallow_fifos=True
        model = model.transform(InsertFIFO(create_shallow_fifos=True))
        model = model.transform(GiveUniqueNodeNames())
        model = model.transform(GiveReadableTensorNames())
        if cfg.folding_config_file is not None:
            model = model.transform(ApplyConfig(cfg.folding_config_file))
        # remove any shallow FIFOs
        model = model.transform(RemoveShallowFIFOs())

    # extract the final configuration and save it as json
    hw_attrs = [
        "PE",
        "SIMD",
        "ram_style",
        "depth",
        "impl_style",
        "resType",
        "mem_mode",
        "runtime_writeable_weights",
    ]
    extract_model_config_to_json(model,
                                 cfg.output_dir + "/final_hw_config.json",
                                 hw_attrs)

    # after FIFOs are ready to go, call PrepareIP and HLSSynthIP again
    # this will only run for the new nodes (e.g. FIFOs and DWCs)
    model = model.transform(
        PrepareIP(cfg._resolve_fpga_part(), cfg._resolve_hls_clk_period()))
    model = model.transform(HLSSynthIP())
    model = model.transform(ReplaceVerilogRelPaths())
    return model
示例#3
0
    def apply(self, model):
        _check_vitis_envvars()
        # first infer layouts
        model = model.transform(InferDataLayouts())
        # prepare at global level, then break up into kernels
        prep_transforms = [
            MakePYNQDriver(platform="alveo"),
            InsertIODMA(512),
            InsertDWC(),
        ]
        for trn in prep_transforms:
            model = model.transform(trn)
            model = model.transform(GiveUniqueNodeNames())
            model = model.transform(GiveReadableTensorNames())

        model = model.transform(Floorplan(floorplan=self.floorplan_file))

        model = model.transform(CreateDataflowPartition())
        model = model.transform(GiveUniqueNodeNames())
        model = model.transform(GiveReadableTensorNames())

        # Build each kernel individually
        sdp_nodes = model.get_nodes_by_op_type("StreamingDataflowPartition")
        for sdp_node in sdp_nodes:
            sdp_node = getCustomOp(sdp_node)
            dataflow_model_filename = sdp_node.get_nodeattr("model")
            kernel_model = ModelWrapper(dataflow_model_filename)
            kernel_model = kernel_model.transform(InsertFIFO())
            kernel_model = kernel_model.transform(
                InsertTLastMarker(both=True, external=False, dynamic=False))
            kernel_model = kernel_model.transform(GiveUniqueNodeNames())
            kernel_model.save(dataflow_model_filename)
            kernel_model = kernel_model.transform(
                PrepareIP(self.fpga_part, self.period_ns))
            kernel_model = kernel_model.transform(HLSSynthIP())
            kernel_model = kernel_model.transform(
                CreateStitchedIP(self.fpga_part, self.period_ns,
                                 sdp_node.onnx_node.name, True))
            kernel_model = kernel_model.transform(
                CreateVitisXO(sdp_node.onnx_node.name))
            kernel_model.set_metadata_prop("platform", "alveo")
            kernel_model.save(dataflow_model_filename)
        # Assemble design from kernels
        model = model.transform(
            VitisLink(
                self.platform,
                round(1000 / self.period_ns),
                strategy=self.strategy,
                enable_debug=self.enable_debug,
            ))
        # set platform attribute for correct remote execution
        model.set_metadata_prop("platform", "alveo")

        return (model, False)
示例#4
0
 def test_ipstitch_rtlsim(self, topology, wbits, abits, kind):
     prev_chkpt_name = get_checkpoint_name(
         topology, wbits, abits, "fifodepth_" + kind
     )
     model = load_test_checkpoint_or_skip(prev_chkpt_name)
     test_fpga_part = get_build_env(kind, target_clk_ns)["part"]
     model = model.transform(InsertDWC())
     model = model.transform(GiveUniqueNodeNames())
     model = model.transform(AnnotateCycles())
     perf = model.analysis(dataflow_performance)
     latency = perf["critical_path_cycles"]
     # rtlsim only supports impl_style=rtl for StreamingFIFO, ensure that
     for fifo_layer in model.get_nodes_by_op_type("StreamingFIFO"):
         getCustomOp(fifo_layer).set_nodeattr("impl_style", "rtl")
     model = model.transform(PrepareIP(test_fpga_part, target_clk_ns))
     model = model.transform(HLSSynthIP())
     model = model.transform(CreateStitchedIP(test_fpga_part, target_clk_ns))
     model = model.transform(PrepareRTLSim())
     model.set_metadata_prop("exec_mode", "rtlsim")
     os.environ["LIVENESS_THRESHOLD"] = str(int(latency * 1.1))
     if rtlsim_trace:
         model.set_metadata_prop(
             "rtlsim_trace", "%s_w%da%d.vcd" % (topology, wbits, abits)
         )
         os.environ["RTLSIM_TRACE_DEPTH"] = "3"
     rtlsim_chkpt = get_checkpoint_name(
         topology, wbits, abits, "ipstitch_rtlsim_" + kind
     )
     model.save(rtlsim_chkpt)
     parent_chkpt = get_checkpoint_name(topology, wbits, abits, "dataflow_parent")
     (input_tensor_npy, output_tensor_npy) = get_golden_io_pair(
         topology, wbits, abits, return_topk=1
     )
     y = execute_parent(parent_chkpt, rtlsim_chkpt, input_tensor_npy)
     model = ModelWrapper(rtlsim_chkpt)
     perf["cycles_rtlsim"] = model.get_metadata_prop("cycles_rtlsim")
     # warnings.warn("Estimated & rtlsim performance: " + str(perf))
     # for (k, v) in perf.items():
     #    update_dashboard_data(topology, wbits, abits, k, v)
     update_dashboard_data(
         topology, wbits, abits, "cycles_rtlsim", perf["cycles_rtlsim"]
     )
     assert np.isclose(y, output_tensor_npy).all()
示例#5
0
    def apply(self, model):
        # first infer layouts
        model = model.transform(InferDataLayouts())
        # prepare at global level, then break up into kernels
        prep_transforms = [
            InsertIODMA(64),
            InsertDWC(),
            Floorplan(),
            CreateDataflowPartition(),
        ]
        for trn in prep_transforms:
            model = model.transform(trn)
            model = model.transform(GiveUniqueNodeNames())
            model = model.transform(GiveReadableTensorNames())
        # Build each kernel individually
        sdp_nodes = model.get_nodes_by_op_type("StreamingDataflowPartition")
        for sdp_node in sdp_nodes:
            prefix = sdp_node.name + "_"
            sdp_node = getCustomOp(sdp_node)
            dataflow_model_filename = sdp_node.get_nodeattr("model")
            kernel_model = ModelWrapper(dataflow_model_filename)
            kernel_model = kernel_model.transform(InsertFIFO())
            kernel_model = kernel_model.transform(GiveUniqueNodeNames(prefix))
            kernel_model.save(dataflow_model_filename)
            kernel_model = kernel_model.transform(
                PrepareIP(self.fpga_part, self.period_ns))
            kernel_model = kernel_model.transform(HLSSynthIP())
            kernel_model = kernel_model.transform(
                CreateStitchedIP(self.fpga_part, self.period_ns,
                                 sdp_node.onnx_node.name, True))
            kernel_model.set_metadata_prop("platform", "zynq-iodma")
            kernel_model.save(dataflow_model_filename)
        # Assemble design from IPs
        model = model.transform(
            MakeZYNQProject(self.platform, enable_debug=self.enable_debug))

        # set platform attribute for correct remote execution
        model.set_metadata_prop("platform", "zynq-iodma")

        # create driver
        model = model.transform(MakePYNQDriver(platform="zynq-iodma"))
        return (model, False)
示例#6
0
def test_end2end_tfc_w1a2_fold_and_tlastmarker():
    model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_dataflow_model.onnx")
    fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
    # (PE, SIMD, in_fifo_depth, out_fifo_depth, ramstyle) for each layer
    config = [
        (16, 49, 16, 64, "block"),
        (8, 8, 64, 64, "auto"),
        (8, 8, 64, 64, "auto"),
        (10, 8, 64, 10, "distributed"),
    ]
    for fcl, (pe, simd, ififo, ofifo, ramstyle) in zip(fc_layers, config):
        fcl_inst = getCustomOp(fcl)
        fcl_inst.set_nodeattr("PE", pe)
        fcl_inst.set_nodeattr("SIMD", simd)
        fcl_inst.set_nodeattr("inFIFODepth", ififo)
        fcl_inst.set_nodeattr("outFIFODepth", ofifo)
        fcl_inst.set_nodeattr("ram_style", ramstyle)
    model = model.transform(InsertDWC())
    model = model.transform(InsertFIFO())
    model = model.transform(InsertTLastMarker())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(AnnotateResources("estimate"))
    model.save(build_dir + "/end2end_tfc_w1a2_folded.onnx")
示例#7
0
    def apply(self, model):
        # change external to decoupled and warn user
        # this way we are sure we have exactly one input/output
        modified_fc_nodes = []
        for node in model.graph.node:
            # verify assumptions
            assert is_fpgadataflow_node(
                node), "Found non-fpgadataflow node: " + str(node)
            assert node.op_type != "StreamingFIFO", "Found existing StreamingFIFO node"
            node = getCustomOp(node)
            node.set_nodeattr("inFIFODepth", self.max_depth)
            node.set_nodeattr("outFIFODepth", self.max_depth)
            if node.onnx_node.op_type == "StreamingFCLayer_Batch":
                mmode = node.get_nodeattr("mem_mode")
                if mmode == "external":
                    modified_fc_nodes.append(node.onnx_node.name)
                    node.set_nodeattr("mem_mode", "decoupled")
                    reset_implementation(node)
                    warnings.warn(
                        "Changed mem_mode from external to decoupled for " +
                        node.onnx_node.name)

        # insert stream infrastructure (DWC/FIFO)
        model = model.transform(InsertDWC())
        model = model.transform(InsertFIFO())
        model = model.transform(GiveUniqueNodeNames())
        model = model.transform(GiveReadableTensorNames())

        # gather FIFO names, check they are of expected depth
        fifos = {}
        for node in model.graph.node:
            if node.op_type == "StreamingFIFO":
                fifos[node.name] = 0
                node = getCustomOp(node)
                # check depths and fix as necessary
                if node.get_nodeattr("depth") != self.max_depth:
                    node.set_nodeattr("depth", self.max_depth)

        # insert FIFOs and do all transformations for RTLsim
        model = model.transform(AnnotateCycles())
        perf = model.analysis(dataflow_performance)
        latency = perf["critical_path_cycles"]
        max_cycles = perf["max_cycles"]
        model = model.transform(PrepareIP(self.fpgapart, self.clk_ns))
        model = model.transform(HLSSynthIP())
        model = model.transform(CreateStitchedIP(self.fpgapart, self.clk_ns))
        model.set_metadata_prop("exec_mode", "rtlsim")

        # calculate input frequency (number of cycles for each input word)
        first_node = getCustomOp(model.graph.node[0])
        ncycles_per_input = max(
            1,
            int(
                math.ceil(perf["max_cycles"] /
                          (np.prod(first_node.get_folded_input_shape()) /
                           first_node.get_folded_input_shape()[-1]))),
        )

        # set sufficiently large threshold for 1 image to  fully execute and exit
        ncycles = int(latency + max_cycles)

        # prepare pyverilator model
        sim = pyverilate_stitched_ip(model)

        reset_rtlsim(sim)
        toggle_clk(sim)

        # set all input valids to 0 and output readies to 1
        # set input data to some constant
        set_signal(sim, "tvalid", 0)
        set_signal(sim, "tready", 1)
        set_signal(sim, "tdata", 0)

        output_detected = False
        while ncycles > 0:
            toggle_clk(sim)
            # set/unset valids
            if ncycles % ncycles_per_input == 0:
                set_signal(sim, "tvalid", 1)
            else:
                set_signal(sim, "tvalid", 0)

            # check/update all fifo counts
            for key in fifos:
                current_state = sim.internals["finn_design_i"][key]["inst"][
                    key + "_" + key]["state"]
                current_addr = sim.internals["finn_design_i"][key]["inst"][
                    key + "_" + key]["addr"]
                if current_state == 2:
                    current_count = current_addr + 2
                else:
                    current_count = current_state
                if current_count > fifos[key]:
                    fifos[key] = current_count

            # since latency estimation is very pessimistic, detect first output
            # and fast-forward the sim
            if get_signal(sim, "tvalid") != 0 and not output_detected:
                ncycles = max_cycles
                output_detected = True
            else:
                ncycles = ncycles - 1

        if not output_detected:
            warnings.warn(
                "No output detected, calculated FIFO depths may not be correct"
            )

        # Apply depths back into the model;
        # also set in/outFIFODepth to zero for non-FIFO
        # nodes, preventing further FIFO insertion
        for node in model.graph.node:
            # set FIFO depth, reset FIFO implementation,
            # and set implementation/ram styles
            if node.op_type == "StreamingFIFO":
                assert node.name in fifos, "FIFO node not found in size dictionary"
                # set depth of FIFO
                depth = optimize_depth(fifos[node.name])
                node_inst = getCustomOp(node)
                node_inst.set_nodeattr("depth", depth)
                # Set FIFO implementation/ram styles
                if depth > self.max_qsrl_depth:
                    node_inst.set_nodeattr("impl_style", "vivado")
                    node_inst.set_nodeattr("ram_style", self.vivado_ram_style)
                else:
                    node_inst.set_nodeattr("impl_style", "rtl")
                # reset implementation
                reset_implementation(node_inst)
                del fifos[node.name]
            else:
                getCustomOp(node).set_nodeattr("inFIFODepth", 0)
                getCustomOp(node).set_nodeattr("outFIFODepth", 0)
                # for every FC node we changed from external to decoupled,
                # change back and reset implementation
                if node.op_type == "StreamingFCLayer_Batch":
                    if node.name in modified_fc_nodes:
                        node_inst = getCustomOp(node)
                        node_inst.set_nodeattr("mem_mode", "external")
                        reset_implementation(node_inst)
                        modified_fc_nodes.remove(node.name)

        assert (len(modified_fc_nodes) == 0 and len(fifos.keys()) == 0
                ), "FIFO/FC nodes left untouched after model reconfiguration"

        # handle custom sizing for SWG FIFOs if desired
        if self.swg_exception:
            model = model.transform(
                CapConvolutionFIFODepths(max_qsrl_depth=self.max_qsrl_depth))
        # remove shallow FIFOs
        model = model.transform(RemoveShallowFIFOs())

        return (model, False)