def create_symbol_lists(): sp500 = sym.get_sp500_symbols() nyse = sym.get_nyse_symbols() amex = sym.get_amex_symbols() nasdaq = sym.get_nasdaq_symbols() Df_sp500 = pd.DataFrame(sp500) # Df_nyse = pd.DataFrame(nyse) # Df_amex = pd.DataFrame(amex) # Df_nasdaq = pd.DataFrame(nasdaq) start = "" with open('/root/jTWSdump_707/requests/base.txt', 'r') as f: start = f.read() # start += "\n" f.close() s_sp500 = "" for symbol in Df_sp500.symbol: if "^" in symbol or "." in symbol: continue #s_sp500 += '"'+symbol.strip()+'" "STK" "SMART" "" "" "" "USD" "" "10 D" "1 min" "1" "TRADES" "10" ""'+'\n' s_sp500 += '"' + symbol.strip( ) + '" "STK" "SMART" "" "" "" "USD" "" "5 Y" "1 day" "1" "TRADES" "1" ""' + '\n' s_nyse = "" # for symbol in Df_nyse.symbol: # if "^" in symbol or "." in symbol: # continue # # s_nyse += '"'+symbol.strip()+'" "STK" "SMART/NYSE" "" "" "" "USD" "" "10 D" "1 min" "1" "TRADES" "10" ""'+'\n' # s_nyse += '"'+symbol.strip()+'" "STK" "SMART/NYSE" "" "" "" "USD" "" "5 Y" "1 day" "1" "TRADES" "1" ""'+'\n' # s_amex = "" # for symbol in Df_amex.symbol: # if "^" in symbol or "." in symbol: # continue # #s_amex += '"'+symbol.strip()+'" "STK" "SMART" "" "" "" "USD" "" "10 D" "1 min" "1" "TRADES" "10" ""'+'\n' # s_amex += '"'+symbol.strip()+'" "STK" "SMART" "" "" "" "USD" "" "5 Y" "1 day" "1" "TRADES" "1" ""'+'\n' # s_nasdaq = "" # # for symbol in Df_nasdaq.symbol: # if "^" in symbol or "." in symbol: # continue # #s_nasdaq += '"'+symbol.strip()+'" "STK" "SMART/NASDAQ" "" "" "" "USD" "" "10 D" "1 min" "1" "TRADES" "10" ""'+'\n' # s_nasdaq += '"'+symbol.strip()+'" "STK" "SMART/NASDAQ" "" "" "" "USD" "" "5 Y" "1 day" "1" "TRADES" "1" ""'+'\n' with open('/root/jTWSdump_707/requests/zipline.txt', 'w+') as f: f.write(start) f.write(s_sp500) f.write(s_nyse) f.write(s_amex) f.write(s_nasdaq) f.close()
def getSymbols(self): idxs = self.cfg["general"]["idxs"].split(",") symbols_list = [] sectors_map = {} if "sp500" in idxs: symbols_list += symbols.get_sp500_symbols() if "nyse" in idxs: symbols_list += symbols.get_nyse_symbols() if "nasdaq" in idxs: symbols_list += symbols.get_nasdaq_symbols() if "amex" in idxs: symbols_list += symbols.get_amex_symbols() for s in symbols_list: sectors_map[s["symbol"]] = s["sector"] with open(self.pwd + "cfg/tickers.json", "w") as f: json.dump(sectors_map, f)
# %% [markdown] # # Load Financial Symbols # %% get_ipython().system('pip install finsymbols') # %% from finsymbols import symbols import json import pprint #symbol_list = symbols.get_sp500_symbols() #symbol_list.extend(symbols.get_amex_symbols()) #symbol_list.extend(symbols.get_nyse_symbols()) #symbol_list.extend(symbols.get_nasdaq_symbols()) symbol_list = symbols.get_nasdaq_symbols() column_names = ['company', 'headquarters', 'industry', 'sector', 'symbol'] df = pd.DataFrame(symbol_list, columns=column_names) my_symbols = df['symbol'].replace("\n", "", regex=True) # %% [markdown] # # Loops # %% [markdown] # ## Create expert Recordings # %% # Download List of NASDAQ Insturment df = pd.read_csv('nasdaq_list.csv') #df = df.iloc[17:] df.head()
def test_nasdaq_not_null(self): nasdaq = symbols.get_nasdaq_symbols() assert len(nasdaq) != 0, 'NASDAQ list is of size 0'
from pandas_datareader import data from finsymbols import symbols r""" This script is used for downloading raw data of various stocks over the last ~15 years. """ all_stocks = symbols.get_nyse_symbols() + symbols.get_nasdaq_symbols() for stock in all_stocks: try: symbol = stock['symbol'] historical_data = data.DataReader(symbol, 'Google', '2002-08-01', '2017-08-01') if len(historical_data) > 252: historical_data.to_csv('Raw_Stock_Data/' + symbol + '_data') except: pass