示例#1
0
def test_screener_overview():
    foverview = Overview()
    filters_dict = {'Exchange': 'AMEX', 'Sector': 'Basic Materials'}
    foverview.set_filter(filters_dict=filters_dict)
    df = foverview.screener_view()
    assert (df is not None)
    ticker = 'TSLA'
    foverview.set_filter(signal='', filters_dict={}, ticker=ticker)
    df = foverview.screener_view()
    assert (df is not None)
示例#2
0
    def partition_days(self, mode="financial"):
        """Partition dataframe to separate dataframes according to the dates.

        Args:
            mode(str): choose an option of period(financial, overview, valuation, ownership,
                       performance, technical).
        """
        check_list = [
            "financial",
            "overview",
            "valuation",
            "ownership",
            "performance",
            "technical",
        ]
        if mode not in check_list:
            raise ValueError("Invalid mode '{}'. Available mode: {}".format(
                mode, check_list))

        for earning_day in self.earning_days:
            if mode == "financial":
                self.df_days[earning_day] = self.df[
                    self.df["Earnings"] == earning_day].reset_index(drop=True)
            else:
                self.df_days[earning_day] = self.df[
                    self.df["Earnings"] == earning_day]["Ticker"].to_list()

        fearnings = None
        if mode == "financial":
            return self.df_days
        elif mode == "overview":
            fearnings = Overview()
        elif mode == "valuation":
            fearnings = Valuation()
        elif mode == "ownership":
            fearnings = Ownership()
        elif mode == "performance":
            fearnings = Performance()
        elif mode == "technical":
            fearnings = Technical()

        filters_dict = {"Earnings Date": self.period}
        fearnings.set_filter(filters_dict=filters_dict)
        df2 = fearnings.screener_view(order="Earnings Date", verbose=0)
        df2_days = {}
        for earning_day in self.earning_days:
            tickers = self.df_days[earning_day]
            df2_days[earning_day] = df2[df2["Ticker"].isin(
                tickers)].reset_index(drop=True)
        self.df_days = df2_days
        return self.df_days
示例#3
0
    def partitionDays(self, mode='financial'):
        """Partition dataframe to separate dataframes according to the dates.

        Args:
            mode(str): choose an option of period(financial, overview, valuation, ownership,
                       performance, technical).
        """
        check_list = [
            'financial', 'overview', 'valuation', 'ownership', 'performance',
            'technical'
        ]
        if mode not in check_list:
            print('Available mode: {}'.format(check_list))
            raise ValueError()

        for earning_day in self.earning_days:
            if mode == 'financial':
                self.df_days[earning_day] = self.df[
                    self.df['Earnings'] == earning_day].reset_index(drop=True)
            else:
                self.df_days[earning_day] = self.df[
                    self.df['Earnings'] == earning_day]['Ticker'].to_list()

        fearnings = None
        if mode == 'financial':
            return self.df_days
        elif mode == 'overview':
            fearnings = Overview()
        elif mode == 'valuation':
            fearnings = Valuation()
        elif mode == 'ownership':
            fearnings = Ownership()
        elif mode == 'performance':
            fearnings = Performance()
        elif mode == 'technical':
            fearnings = Technical()

        filters_dict = {'Earnings Date': self.period}
        fearnings.set_filter(filters_dict=filters_dict)
        df2 = fearnings.ScreenerView(order='Earnings Date', verbose=0)
        df2_days = {}
        for earning_day in self.earning_days:
            tickers = self.df_days[earning_day]
            df2_days[earning_day] = df2[df2['Ticker'].isin(
                tickers)].reset_index(drop=True)
        self.df_days = df2_days
        return self.df_days