def test_pivot_second_dimension_with_one_metric(self): result = ReactTable(slicer.metrics.wins, pivot=[slicer.dimensions.state]) \ .transform(cont_uni_dim_df, slicer, [slicer.dimensions.timestamp, slicer.dimensions.state], []) self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, {'Header': 'Texas', 'accessor': '1'}, {'Header': 'California', 'accessor': '2'}], 'data': [{ '$d$timestamp': {'raw': '1996-01-01'}, '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} }, { '$d$timestamp': {'raw': '2000-01-01'}, '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} }, { '$d$timestamp': {'raw': '2004-01-01'}, '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} }, { '$d$timestamp': {'raw': '2008-01-01'}, '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} }, { '$d$timestamp': {'raw': '2012-01-01'}, '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} }, { '$d$timestamp': {'raw': '2016-01-01'}, '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} }] }, result)
def test_pivot_single_dimension_as_rows_single_metric_and_transpose_set_to_true(self): result = ReactTable(slicer.metrics.wins, pivot=[slicer.dimensions.candidate], transpose=True) \ .transform(uni_dim_df, slicer, [slicer.dimensions.candidate], []) self.assertEqual({ 'columns': [{'Header': '', 'accessor': '$d$metrics'}, {'Header': 'Bill Clinton', 'accessor': '1'}, {'Header': 'Bob Dole', 'accessor': '2'}, {'Header': 'Ross Perot', 'accessor': '3'}, {'Header': 'George Bush', 'accessor': '4'}, {'Header': 'Al Gore', 'accessor': '5'}, {'Header': 'John Kerry', 'accessor': '6'}, {'Header': 'Barrack Obama', 'accessor': '7'}, {'Header': 'John McCain', 'accessor': '8'}, {'Header': 'Mitt Romney', 'accessor': '9'}, {'Header': 'Donald Trump', 'accessor': '10'}, {'Header': 'Hillary Clinton', 'accessor': '11'}], 'data': [{ '$d$metrics': {'raw': 'Wins'}, '1': {'display': '2', 'raw': 2}, '10': {'display': '2', 'raw': 2}, '11': {'display': '0', 'raw': 0}, '2': {'display': '0', 'raw': 0}, '3': {'display': '0', 'raw': 0}, '4': {'display': '4', 'raw': 4}, '5': {'display': '0', 'raw': 0}, '6': {'display': '0', 'raw': 0}, '7': {'display': '4', 'raw': 4}, '8': {'display': '0', 'raw': 0}, '9': {'display': '0', 'raw': 0} }] }, result)
def test_time_series_ref(self): result = ReactTable(slicer.metrics.votes) \ .transform(cont_uni_dim_ref_df, slicer, [ slicer.dimensions.timestamp, slicer.dimensions.state ], [ ElectionOverElection(slicer.dimensions.timestamp) ]) self.assertIn('data', result) result['data'] = result['data'][:2] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, {'Header': 'State', 'accessor': '$d$state'}, {'Header': 'Votes', 'accessor': '$m$votes'}, {'Header': 'Votes (EoE)', 'accessor': '$m$votes_eoe'}], 'data': [{ '$d$state': {'display': 'Texas', 'raw': '1'}, '$d$timestamp': {'raw': '2000-01-01'}, '$m$votes': {'display': '6,233,385', 'raw': 6233385}, '$m$votes_eoe': {'display': '5,574,387', 'raw': 5574387} }, { '$d$state': {'display': 'California', 'raw': '2'}, '$d$timestamp': {'raw': '2000-01-01'}, '$m$votes': {'display': '10,428,632', 'raw': 10428632}, '$m$votes_eoe': {'display': '9,646,062', 'raw': 9646062} }] }, result)
def test_pivot_single_metric_time_series_dim(self): result = ReactTable(slicer.metrics.wins) \ .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], []) self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, {'Header': 'Wins', 'accessor': '$m$wins'}], 'data': [{ '$d$timestamp': {'raw': '1996-01-01'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$timestamp': {'raw': '2000-01-01'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$timestamp': {'raw': '2004-01-01'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$timestamp': {'raw': '2008-01-01'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$timestamp': {'raw': '2012-01-01'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$timestamp': {'raw': '2016-01-01'}, '$m$wins': {'display': '2', 'raw': 2} }] }, result)
def test_multi_dims_with_all_levels_totals(self): result = ReactTable(slicer.metrics.wins) \ .transform(cont_uni_dim_all_totals_df, slicer, [slicer.dimensions.timestamp.rollup(), slicer.dimensions.state.rollup()], []) self.assertIn('data', result) result['data'] = result['data'][:3] + result['data'][-1:] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, {'Header': 'State', 'accessor': '$d$state'}, {'Header': 'Wins', 'accessor': '$m$wins'}], 'data': [{ '$d$state': {'display': 'Texas', 'raw': '1'}, '$d$timestamp': {'raw': '1996-01-01'}, '$m$wins': {'display': '1', 'raw': 1} }, { '$d$state': {'display': 'California', 'raw': '2'}, '$d$timestamp': {'raw': '1996-01-01'}, '$m$wins': {'display': '1', 'raw': 1} }, { '$d$state': {'raw': 'Totals'}, '$d$timestamp': {'raw': '1996-01-01'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$state': {'raw': 'Totals'}, '$d$timestamp': {'raw': 'Totals'}, '$m$wins': {'display': '12', 'raw': 12} }] }, result)
def test_dim_with_hyperlink_depending_on_another_dim_included_if_other_dim_is_selected(self): slicer = self.slicer slicer.dimensions.political_party.hyperlink_template = 'http://example.com/candidates/{candidate}/' result = ReactTable(slicer.metrics.wins) \ .transform(cat_uni_dim_df, slicer, [slicer.dimensions.political_party, slicer.dimensions.candidate], []) self.assertIn('data', result) result['data'] = result['data'][:2] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': 'Party', 'accessor': '$d$political_party'}, {'Header': 'Candidate', 'accessor': '$d$candidate'}, {'Header': 'Wins', 'accessor': '$m$wins'}], 'data': [{ '$d$candidate': {'display': 'Bill Clinton', 'raw': '1'}, '$d$political_party': { 'display': 'Democrat', 'hyperlink': 'http://example.com/candidates/1/', 'raw': 'd' }, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$candidate': {'display': 'Al Gore', 'raw': '5'}, '$d$political_party': { 'display': 'Democrat', 'hyperlink': 'http://example.com/candidates/5/', 'raw': 'd' }, '$m$wins': {'display': '0', 'raw': 0} }] }, result)
def test_uni_dim_no_display_definition(self): import copy candidate = copy.copy(slicer.dimensions.candidate) uni_dim_df_copy = uni_dim_df.copy() del uni_dim_df_copy[fd(slicer.dimensions.candidate.display.key)] del candidate.display result = ReactTable(slicer.metrics.wins) \ .transform(uni_dim_df_copy, slicer, [candidate], []) self.assertEqual({ 'columns': [{'Header': 'Candidate', 'accessor': '$d$candidate'}, {'Header': 'Wins', 'accessor': '$m$wins'}], 'data': [{'$d$candidate': {'raw': '1'}, '$m$wins': {'display': '2', 'raw': 2}}, {'$d$candidate': {'raw': '2'}, '$m$wins': {'display': '0', 'raw': 0}}, {'$d$candidate': {'raw': '3'}, '$m$wins': {'display': '0', 'raw': 0}}, {'$d$candidate': {'raw': '4'}, '$m$wins': {'display': '4', 'raw': 4}}, {'$d$candidate': {'raw': '5'}, '$m$wins': {'display': '0', 'raw': 0}}, {'$d$candidate': {'raw': '6'}, '$m$wins': {'display': '0', 'raw': 0}}, {'$d$candidate': {'raw': '7'}, '$m$wins': {'display': '4', 'raw': 4}}, {'$d$candidate': {'raw': '8'}, '$m$wins': {'display': '0', 'raw': 0}}, {'$d$candidate': {'raw': '9'}, '$m$wins': {'display': '0', 'raw': 0}}, { '$d$candidate': {'raw': '10'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$candidate': {'raw': '11'}, '$m$wins': {'display': '0', 'raw': 0} }] }, result)
def test_time_series_dim_with_operation(self): result = ReactTable(CumSum(slicer.metrics.votes)) \ .transform(cont_dim_operation_df, slicer, [slicer.dimensions.timestamp], []) self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, {'Header': 'CumSum(Votes)', 'accessor': '$m$cumsum(votes)'}], 'data': [{ '$d$timestamp': {'raw': '1996-01-01'}, '$m$cumsum(votes)': {'display': '15,220,449', 'raw': 15220449} }, { '$d$timestamp': {'raw': '2000-01-01'}, '$m$cumsum(votes)': {'display': '31,882,466', 'raw': 31882466} }, { '$d$timestamp': {'raw': '2004-01-01'}, '$m$cumsum(votes)': {'display': '51,497,398', 'raw': 51497398} }, { '$d$timestamp': {'raw': '2008-01-01'}, '$m$cumsum(votes)': {'display': '72,791,613', 'raw': 72791613} }, { '$d$timestamp': {'raw': '2012-01-01'}, '$m$cumsum(votes)': {'display': '93,363,823', 'raw': 93363823} }, { '$d$timestamp': {'raw': '2016-01-01'}, '$m$cumsum(votes)': {'display': '111,674,336', 'raw': 111674336} }] }, result)
def test_single_metric(self): result = ReactTable(slicer.metrics.votes) \ .transform(single_metric_df, slicer, [], []) self.assertEqual({ 'columns': [{'Header': 'Votes', 'accessor': '$m$votes'}], 'data': [{'$m$votes': {'display': '111,674,336', 'raw': 111674336}}] }, result)
def test_multiple_metrics_reversed(self): result = ReactTable(slicer.metrics.wins, slicer.metrics.votes) \ .transform(multi_metric_df, slicer, [], []) self.assertEqual({ 'columns': [{'Header': 'Wins', 'accessor': '$m$wins'}, {'Header': 'Votes', 'accessor': '$m$votes'}], 'data': [{ '$m$votes': {'display': '111,674,336', 'raw': 111674336}, '$m$wins': {'display': '12', 'raw': 12} }] }, result)
def test_transpose(self): result = ReactTable(slicer.metrics.wins, transpose=True) \ .transform(cat_dim_df, slicer, [slicer.dimensions.political_party], []) self.assertEqual({ 'columns': [{'Header': '', 'accessor': '$d$metrics'}, {'Header': 'Democrat', 'accessor': 'd'}, {'Header': 'Independent', 'accessor': 'i'}, {'Header': 'Republican', 'accessor': 'r'}], 'data': [{ '$d$metrics': {'raw': 'Wins'}, 'd': {'display': '6', 'raw': 6}, 'i': {'display': '0', 'raw': 0}, 'r': {'display': '6', 'raw': 6} }] }, result)
def test_pivot_single_dimension_as_rows_multiple_metrics(self): result = ReactTable(slicer.metrics.wins, slicer.metrics.votes, pivot=[slicer.dimensions.candidate]) \ .transform(uni_dim_df, slicer, [slicer.dimensions.candidate], []) self.assertEqual({ 'columns': [{'Header': '', 'accessor': '$d$metrics'}, {'Header': 'Bill Clinton', 'accessor': '1'}, {'Header': 'Bob Dole', 'accessor': '2'}, {'Header': 'Ross Perot', 'accessor': '3'}, {'Header': 'George Bush', 'accessor': '4'}, {'Header': 'Al Gore', 'accessor': '5'}, {'Header': 'John Kerry', 'accessor': '6'}, {'Header': 'Barrack Obama', 'accessor': '7'}, {'Header': 'John McCain', 'accessor': '8'}, {'Header': 'Mitt Romney', 'accessor': '9'}, {'Header': 'Donald Trump', 'accessor': '10'}, {'Header': 'Hillary Clinton', 'accessor': '11'}], 'data': [{ '$d$metrics': {'raw': 'Wins'}, '1': {'display': '2', 'raw': 2}, '10': {'display': '2', 'raw': 2}, '11': {'display': '0', 'raw': 0}, '2': {'display': '0', 'raw': 0}, '3': {'display': '0', 'raw': 0}, '4': {'display': '4', 'raw': 4}, '5': {'display': '0', 'raw': 0}, '6': {'display': '0', 'raw': 0}, '7': {'display': '4', 'raw': 4}, '8': {'display': '0', 'raw': 0}, '9': {'display': '0', 'raw': 0} }, { '$d$metrics': {'raw': 'Votes'}, '1': {'display': '7,579,518', 'raw': 7579518}, '10': {'display': '13,438,835', 'raw': 13438835}, '11': {'display': '4,871,678', 'raw': 4871678}, '2': {'display': '6,564,547', 'raw': 6564547}, '3': {'display': '1,076,384', 'raw': 1076384}, '4': {'display': '18,403,811', 'raw': 18403811}, '5': {'display': '8,294,949', 'raw': 8294949}, '6': {'display': '9,578,189', 'raw': 9578189}, '7': {'display': '24,227,234', 'raw': 24227234}, '8': {'display': '9,491,109', 'raw': 9491109}, '9': {'display': '8,148,082', 'raw': 8148082} }] }, result)
def test_pivot_second_dimension_and_transpose_with_all_levels_totals(self): state = slicer.dimensions.state.rollup() result = ReactTable(slicer.metrics.wins, slicer.metrics.votes, pivot=[state], transpose=True) \ .transform(cont_uni_dim_all_totals_df, slicer, [slicer.dimensions.timestamp.rollup(), state], []) self.assertIn('data', result) result['data'] = result['data'][:2] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': '', 'accessor': '$d$metrics'}, {'Header': 'State', 'accessor': '$d$state'}, {'Header': '1996-01-01', 'accessor': '1996-01-01'}, {'Header': '2000-01-01', 'accessor': '2000-01-01'}, {'Header': '2004-01-01', 'accessor': '2004-01-01'}, {'Header': '2008-01-01', 'accessor': '2008-01-01'}, {'Header': '2012-01-01', 'accessor': '2012-01-01'}, {'Header': '2016-01-01', 'accessor': '2016-01-01'}, { 'Header': 'Totals', 'accessor': 'Totals', 'className': 'fireant-totals' }], 'data': [{ '$d$metrics': {'raw': 'Wins'}, '$d$state': {'display': 'Texas', 'raw': '1'}, '1996-01-01': {'display': '1', 'raw': 1}, '2000-01-01': {'display': '1', 'raw': 1}, '2004-01-01': {'display': '1', 'raw': 1}, '2008-01-01': {'display': '1', 'raw': 1}, '2012-01-01': {'display': '1', 'raw': 1}, '2016-01-01': {'display': '1', 'raw': 1}, 'Totals': {'display': 'null', 'raw': None} }, { '$d$metrics': {'raw': 'Wins'}, '$d$state': {'display': 'California', 'raw': '2'}, '1996-01-01': {'display': '1', 'raw': 1}, '2000-01-01': {'display': '1', 'raw': 1}, '2004-01-01': {'display': '1', 'raw': 1}, '2008-01-01': {'display': '1', 'raw': 1}, '2012-01-01': {'display': '1', 'raw': 1}, '2016-01-01': {'display': '1', 'raw': 1}, 'Totals': {'display': 'null', 'raw': None} }] }, result)
def test_pivot_first_dimension_and_transpose_with_all_levels_totals(self): state = slicer.dimensions.state.rollup() result = ReactTable(slicer.metrics.wins, slicer.metrics.votes, pivot=[state], transpose=True) \ .transform(cont_uni_dim_all_totals_df, slicer, [slicer.dimensions.timestamp.rollup(), state], []) self.assertIn('data', result) result['data'] = result['data'][:6:3] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': '', 'accessor': '$d$metrics'}, {'Header': 'State', 'accessor': '$d$state'}, {'Header': '1996-01-01', 'accessor': '1996-01-01'}, {'Header': '2000-01-01', 'accessor': '2000-01-01'}, {'Header': '2004-01-01', 'accessor': '2004-01-01'}, {'Header': '2008-01-01', 'accessor': '2008-01-01'}, {'Header': '2012-01-01', 'accessor': '2012-01-01'}, {'Header': '2016-01-01', 'accessor': '2016-01-01'}, { 'Header': 'Totals', 'accessor': 'Totals', 'className': 'fireant-totals' }], 'data': [{ '$d$metrics': {'raw': 'Wins'}, '$d$state': {'display': 'Texas', 'raw': '1'}, '1996-01-01': {'display': '1', 'raw': 1}, '2000-01-01': {'display': '1', 'raw': 1}, '2004-01-01': {'display': '1', 'raw': 1}, '2008-01-01': {'display': '1', 'raw': 1}, '2012-01-01': {'display': '1', 'raw': 1}, '2016-01-01': {'display': '1', 'raw': 1}, 'Totals': {'display': 'null', 'raw': None} }, { '$d$metrics': {'raw': 'Votes'}, '$d$state': {'display': 'Texas', 'raw': '1'}, '1996-01-01': {'display': '5,574,387', 'raw': 5574387}, '2000-01-01': {'display': '6,233,385', 'raw': 6233385}, '2004-01-01': {'display': '7,359,621', 'raw': 7359621}, '2008-01-01': {'display': '8,007,961', 'raw': 8007961}, '2012-01-01': {'display': '7,877,967', 'raw': 7877967}, '2016-01-01': {'display': '5,072,915', 'raw': 5072915}, 'Totals': {'display': 'null', 'raw': None} }] }, result)
def test_uni_dim(self): result = ReactTable(slicer.metrics.wins) \ .transform(uni_dim_df, slicer, [slicer.dimensions.candidate], []) self.assertEqual({ 'columns': [{'Header': 'Candidate', 'accessor': '$d$candidate'}, {'Header': 'Wins', 'accessor': '$m$wins'}], 'data': [{ '$d$candidate': {'display': 'Bill Clinton', 'raw': '1'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$candidate': {'display': 'Bob Dole', 'raw': '2'}, '$m$wins': {'display': '0', 'raw': 0} }, { '$d$candidate': {'display': 'Ross Perot', 'raw': '3'}, '$m$wins': {'display': '0', 'raw': 0} }, { '$d$candidate': {'display': 'George Bush', 'raw': '4'}, '$m$wins': {'display': '4', 'raw': 4} }, { '$d$candidate': {'display': 'Al Gore', 'raw': '5'}, '$m$wins': {'display': '0', 'raw': 0} }, { '$d$candidate': {'display': 'John Kerry', 'raw': '6'}, '$m$wins': {'display': '0', 'raw': 0} }, { '$d$candidate': {'display': 'Barrack Obama', 'raw': '7'}, '$m$wins': {'display': '4', 'raw': 4} }, { '$d$candidate': {'display': 'John McCain', 'raw': '8'}, '$m$wins': {'display': '0', 'raw': 0} }, { '$d$candidate': {'display': 'Mitt Romney', 'raw': '9'}, '$m$wins': {'display': '0', 'raw': 0} }, { '$d$candidate': {'display': 'Donald Trump', 'raw': '10'}, '$m$wins': {'display': '2', 'raw': 2} }, { '$d$candidate': {'display': 'Hillary Clinton', 'raw': '11'}, '$m$wins': {'display': '0', 'raw': 0} }] }, result)
def test_multi_dims_time_series_and_uni(self): result = ReactTable(slicer.metrics.wins) \ .transform(cont_uni_dim_df, slicer, [slicer.dimensions.timestamp, slicer.dimensions.state], []) self.assertIn('data', result) result['data'] = result['data'][:2] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, {'Header': 'State', 'accessor': '$d$state'}, {'Header': 'Wins', 'accessor': '$m$wins'}], 'data': [{ '$d$state': {'display': 'Texas', 'raw': '1'}, '$d$timestamp': {'raw': '1996-01-01'}, '$m$wins': {'display': '1', 'raw': 1} }, { '$d$state': {'display': 'California', 'raw': '2'}, '$d$timestamp': {'raw': '1996-01-01'}, '$m$wins': {'display': '1', 'raw': 1} }] }, result)
def test_pivot_second_dimension_with_multiple_metrics(self): result = ReactTable(slicer.metrics.wins, slicer.metrics.votes, pivot=[slicer.dimensions.state]) \ .transform(cont_uni_dim_df, slicer, [slicer.dimensions.timestamp, slicer.dimensions.state], []) self.assertIn('data', result) result['data'] = result['data'][:2] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, { 'Header': 'Votes', 'columns': [{'Header': 'Texas', 'accessor': '$m$votes.1'}, {'Header': 'California', 'accessor': '$m$votes.2'}] }, { 'Header': 'Wins', 'columns': [{'Header': 'Texas', 'accessor': '$m$wins.1'}, {'Header': 'California', 'accessor': '$m$wins.2'}] }], 'data': [{ '$d$timestamp': {'raw': '1996-01-01'}, '$m$votes': { '1': {'display': '5,574,387', 'raw': 5574387}, '2': {'display': '9,646,062', 'raw': 9646062} }, '$m$wins': { '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} } }, { '$d$timestamp': {'raw': '2000-01-01'}, '$m$votes': { '1': {'display': '6,233,385', 'raw': 6233385}, '2': {'display': '10,428,632', 'raw': 10428632} }, '$m$wins': { '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1} } }] }, result)
def test_dim_with_hyperlink_hyperlink_is_always_included(self): slicer = self.slicer slicer.dimensions.political_party.hyperlink_template = 'http://example.com/{political_party}' result = ReactTable(slicer.metrics.wins) \ .transform(cat_dim_df, slicer, [slicer.dimensions.political_party], []) self.assertEqual({ 'columns': [{'Header': 'Party', 'accessor': '$d$political_party'}, {'Header': 'Wins', 'accessor': '$m$wins'}], 'data': [{ '$d$political_party': {'display': 'Democrat', 'hyperlink': 'http://example.com/d', 'raw': 'd'}, '$m$wins': {'display': '6', 'raw': 6} }, { '$d$political_party': {'display': 'Independent', 'hyperlink': 'http://example.com/i', 'raw': 'i'}, '$m$wins': {'display': '0', 'raw': 0} }, { '$d$political_party': {'display': 'Republican', 'hyperlink': 'http://example.com/r', 'raw': 'r'}, '$m$wins': {'display': '6', 'raw': 6} }] }, result)
def test_pivot_multi_dims_with_all_levels_totals(self): state = slicer.dimensions.state.rollup() result = ReactTable(slicer.metrics.wins, slicer.metrics.votes, pivot=[state]) \ .transform(cont_uni_dim_all_totals_df, slicer, [slicer.dimensions.timestamp.rollup(), state], []) self.assertIn('data', result) result['data'] = result['data'][:2] + result['data'][-1:] # shorten the results to make the test easier to read self.assertEqual({ 'columns': [{'Header': 'Timestamp', 'accessor': '$d$timestamp'}, { 'Header': 'Votes', 'columns': [{'Header': 'Texas', 'accessor': '$m$votes.1'}, {'Header': 'California', 'accessor': '$m$votes.2'}, { 'Header': 'Totals', 'accessor': '$m$votes.{}'.format(MAX_STRING), 'className': 'fireant-totals' }] }, { 'Header': 'Wins', 'columns': [{'Header': 'Texas', 'accessor': '$m$wins.1'}, {'Header': 'California', 'accessor': '$m$wins.2'}, { 'Header': 'Totals', 'accessor': '$m$wins.{}'.format(MAX_STRING), 'className': 'fireant-totals' }] }], 'data': [{ '$d$timestamp': {'raw': '1996-01-01'}, '$m$votes': { '1': {'display': '5,574,387', 'raw': 5574387}, '2': {'display': '9,646,062', 'raw': 9646062}, MAX_STRING: {'display': '15,220,449', 'raw': 15220449} }, '$m$wins': { '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1}, MAX_STRING: {'display': '2', 'raw': 2} } }, { '$d$timestamp': {'raw': '2000-01-01'}, '$m$votes': { '1': {'display': '6,233,385', 'raw': 6233385}, '2': {'display': '10,428,632', 'raw': 10428632}, MAX_STRING: {'display': '16,662,017', 'raw': 16662017} }, '$m$wins': { '1': {'display': '1', 'raw': 1}, '2': {'display': '1', 'raw': 1}, MAX_STRING: {'display': '2', 'raw': 2} } }, { '$d$timestamp': {'raw': 'Totals'}, '$m$votes': { '1': {'display': 'null', 'raw': None}, '2': {'display': 'null', 'raw': None}, MAX_STRING: { 'display': '111,674,336', 'raw': 111674336 } }, '$m$wins': { '1': {'display': 'null', 'raw': None}, '2': {'display': 'null', 'raw': None}, MAX_STRING: {'display': '12', 'raw': 12} } }] }, result)