def test_apply_to_timeseries(self): rolling_mean = RollingMean(mock_dataset.fields.wins, 3) result = rolling_mean.apply(dimx1_date_df, None) expected = pd.Series([nan, nan, 2.0, 2.0, 2.0, 2.0], name='$wins', index=dimx1_date_df.index) pandas.testing.assert_series_equal(expected, result)
def test_apply_to_timeseries_with_uni_dim_and_ref(self): rolling_mean = RollingMean(mock_dataset.fields.wins, 3) result = rolling_mean.apply(dimx2_date_str_ref_df, ElectionOverElection(mock_dataset.fields.timestamp)) expected = pd.Series([nan, nan, nan, nan, 4 / 3, 0., 4 / 3, 2 / 3, 4 / 3, 4 / 3, 2 / 3], name='$wins_eoe', index=dimx2_date_str_ref_df.index) pandas.testing.assert_series_equal(expected, result)
def test_apply_to_timeseries_with_uni_dim_and_ref(self): rolling_mean = RollingMean(slicer.metrics.wins, 3) result = rolling_mean.apply(cont_uni_dim_ref_df, ElectionOverElection(slicer.dimensions.timestamp)) expected = pd.Series([np.nan, np.nan, np.nan, np.nan, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], name='$m$wins_eoe', index=cont_uni_dim_ref_df.index) pandas.testing.assert_series_equal(expected, result)
def test_apply_to_timeseries_with_uni_dim(self): rolling_mean = RollingMean(slicer.metrics.wins, 3) result = rolling_mean.apply(cont_uni_dim_df, None) expected = pd.Series([np.nan, np.nan, np.nan, np.nan, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], name='$m$wins', index=cont_uni_dim_df.index) pandas.testing.assert_series_equal(expected, result)
def test_apply_to_timeseries(self): rolling_mean = RollingMean(slicer.metrics.wins, 3) result = rolling_mean.apply(cont_dim_df, None) expected = pd.Series([np.nan, np.nan, 2.0, 2.0, 2.0, 2.0], name='$m$wins', index=cont_dim_df.index) pandas.testing.assert_series_equal(expected, result)
def test_apply_to_timeseries_with_uni_dim_and_ref(self): rolling_mean = RollingMean(slicer.metrics.wins, 3) result = rolling_mean.apply( cont_uni_dim_ref_df, ElectionOverElection(slicer.dimensions.timestamp)) expected = pd.Series( [np.nan, np.nan, np.nan, np.nan, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], name='$m$wins_eoe', index=cont_uni_dim_ref_df.index) pandas.testing.assert_series_equal(expected, result)
def test_apply_to_timeseries_with_uni_dim(self): rolling_mean = RollingMean(mock_dataset.fields.wins, 3) result = rolling_mean.apply(dimx2_date_str_df, None) expected = pd.Series( [ nan, nan, nan, nan, nan, 2 / 3, 4 / 3, 2 / 3, 4 / 3, 4 / 3, 2 / 3, 4 / 3, 2 / 3 ], name='$wins', index=dimx2_date_str_df.index, ) pandas.testing.assert_series_equal(expected, result)