def _reconstruction_calls(self, split_mixed_op, split_trace_op):
        """This generates the reconstruction calls for the unknowns using the
        Lagrange multipliers.

        :arg split_mixed_op: a ``dict`` of split forms that make up the broken
                             mixed operator from the original problem.
        :arg split_trace_op: a ``dict`` of split forms that make up the trace
                             contribution in the hybridized mixed system.
        """
        from firedrake.assemble import create_assembly_callable

        # We always eliminate the velocity block first
        id0, id1 = (self.vidx, self.pidx)

        # TODO: When PyOP2 is able to write into mixed dats,
        # the reconstruction expressions can simplify into
        # one clean expression.
        A = Tensor(split_mixed_op[(id0, id0)])
        B = Tensor(split_mixed_op[(id0, id1)])
        C = Tensor(split_mixed_op[(id1, id0)])
        D = Tensor(split_mixed_op[(id1, id1)])
        K_0 = Tensor(split_trace_op[(0, id0)])
        K_1 = Tensor(split_trace_op[(0, id1)])

        # Split functions and reconstruct each bit separately
        split_residual = self.broken_residual.split()
        split_sol = self.broken_solution.split()
        g = AssembledVector(split_residual[id0])
        f = AssembledVector(split_residual[id1])
        sigma = split_sol[id0]
        u = split_sol[id1]
        lambdar = AssembledVector(self.trace_solution)

        M = D - C * A.inv * B
        R = K_1.T - C * A.inv * K_0.T
        u_rec = M.solve(f - C * A.inv * g - R * lambdar,
                        decomposition="PartialPivLU")
        self._sub_unknown = create_assembly_callable(u_rec,
                                                     tensor=u,
                                                     form_compiler_parameters=self.ctx.fc_params)

        sigma_rec = A.solve(g - B * AssembledVector(u) - K_0.T * lambdar,
                            decomposition="PartialPivLU")
        self._elim_unknown = create_assembly_callable(sigma_rec,
                                                      tensor=sigma,
                                                      form_compiler_parameters=self.ctx.fc_params)
示例#2
0
    def _reconstruction_calls(self, split_mixed_op, split_trace_op):
        """This generates the reconstruction calls for the unknowns using the
        Lagrange multipliers.

        :arg split_mixed_op: a ``dict`` of split forms that make up the broken
                             mixed operator from the original problem.
        :arg split_trace_op: a ``dict`` of split forms that make up the trace
                             contribution in the hybridized mixed system.
        """
        from firedrake.assemble import create_assembly_callable

        # We always eliminate the velocity block first
        id0, id1 = (self.vidx, self.pidx)

        # TODO: When PyOP2 is able to write into mixed dats,
        # the reconstruction expressions can simplify into
        # one clean expression.
        A = Tensor(split_mixed_op[(id0, id0)])
        B = Tensor(split_mixed_op[(id0, id1)])
        C = Tensor(split_mixed_op[(id1, id0)])
        D = Tensor(split_mixed_op[(id1, id1)])
        K_0 = Tensor(split_trace_op[(0, id0)])
        K_1 = Tensor(split_trace_op[(0, id1)])

        # Split functions and reconstruct each bit separately
        split_residual = self.broken_residual.split()
        split_sol = self.broken_solution.split()
        g = AssembledVector(split_residual[id0])
        f = AssembledVector(split_residual[id1])
        sigma = split_sol[id0]
        u = split_sol[id1]
        lambdar = AssembledVector(self.trace_solution)

        M = D - C * A.inv * B
        R = K_1.T - C * A.inv * K_0.T
        u_rec = M.solve(f - C * A.inv * g - R * lambdar,
                        decomposition="PartialPivLU")
        self._sub_unknown = create_assembly_callable(
            u_rec, tensor=u, form_compiler_parameters=self.ctx.fc_params)

        sigma_rec = A.solve(g - B * AssembledVector(u) - K_0.T * lambdar,
                            decomposition="PartialPivLU")
        self._elim_unknown = create_assembly_callable(
            sigma_rec,
            tensor=sigma,
            form_compiler_parameters=self.ctx.fc_params)
示例#3
0
 def retrieve_user_S_approx(self, pc, usercode):
     """Retrieve a user-defined :class:firedrake.preconditioners.AuxiliaryOperator from the PETSc Options,
     which is an approximation to the Schur complement and its inverse is used
     to precondition the local solve in the reconstruction calls (e.g.).
     """
     _, _, _, A11 = self.list_split_mixed_ops
     test, trial = A11.arguments()
     if usercode != "":
         (modname, funname) = usercode.rsplit('.', 1)
         mod = __import__(modname)
         fun = getattr(mod, funname)
         if isinstance(fun, type):
             fun = fun()
         return Tensor(fun.form(pc, test, trial)[0])
     else:
         return None
示例#4
0
    def _split_mixed_operator(self):
        split_mixed_op = dict(split_form(self.Atilde.form))
        id0, id1 = (self.vidx, self.pidx)
        A00 = Tensor(split_mixed_op[(id0, id0)])
        A01 = Tensor(split_mixed_op[(id0, id1)])
        A10 = Tensor(split_mixed_op[(id1, id0)])
        A11 = Tensor(split_mixed_op[(id1, id1)])
        self.list_split_mixed_ops = [A00, A01, A10, A11]

        split_trace_op = dict(split_form(self.K.form))
        K0 = Tensor(split_trace_op[(0, id0)])
        K1 = Tensor(split_trace_op[(0, id1)])
        self.list_split_trace_ops = [K0, K1]
示例#5
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC, assemble)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()

        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.cxt.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        # Set up the KSP for the hdiv residual projection
        hdiv_mass_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_mass_ksp.setOptionsPrefix(prefix + "hdiv_residual_")

        # HDiv mass operator
        p = TrialFunction(V[self.vidx])
        q = TestFunction(V[self.vidx])
        mass = ufl.dot(p, q)*ufl.dx
        # TODO: Bcs?
        M = assemble(mass, bcs=None, form_compiler_parameters=self.cxt.fc_params)
        M.force_evaluation()
        Mmat = M.petscmat

        hdiv_mass_ksp.setOperators(Mmat)
        hdiv_mass_ksp.setUp()
        hdiv_mass_ksp.setFromOptions()
        self.hdiv_mass_ksp = hdiv_mass_ksp

        # Storing the result of A.inv * r, where A is the HDiv
        # mass matrix and r is the HDiv residual
        self._primal_r = Function(V[self.vidx])

        tau = TestFunction(V_d[self.vidx])
        self._assemble_broken_r = create_assembly_callable(
            ufl.dot(self._primal_r, tau)*ufl.dx,
            tensor=self.broken_residual.split()[self.vidx],
            form_compiler_parameters=self.cxt.fc_params)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.cxt.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        # We zero out the contribution of the trace variables on the exterior
        # boundary. Extruded cells will have both horizontal and vertical
        # facets
        if mesh.cell_set._extruded:
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary"),
                         DirichletBC(TraceSpace, Constant(0.0), "bottom"),
                         DirichletBC(TraceSpace, Constant(0.0), "top")]
            K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS_h +
                       gammar('+') * ufl.dot(sigma, n) * ufl.dS_v)
        else:
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary")]
            K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.cxt.row_bcs:
            raise NotImplementedError("Strong BCs not currently handled. Try imposing them weakly.")

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * self.broken_residual,
            tensor=self.schur_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.cxt.fc_params)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.cxt.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullspace = create_schur_nullspace(P, -K * Atilde,
                                           V, V_d, TraceSpace,
                                           pc.comm)
        if nullspace:
            Smat.setNullSpace(nullspace)

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)

        # NOTE: The projection stage *might* be replaced by a Fortin
        # operator. We may want to allow the user to specify if they
        # wish to use a Fortin operator over a projection, or vice-versa.
        # In a future add-on, we can add a switch which chooses either
        # the Fortin reconstruction or the usual KSP projection.

        # Set up the projection KSP
        hdiv_projection_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_projection_ksp.setOptionsPrefix(prefix + 'hdiv_projection_')

        # Reuse the mass operator from the hdiv_mass_ksp
        hdiv_projection_ksp.setOperators(Mmat)

        # Construct the RHS for the projection stage
        self._projection_rhs = Function(V[self.vidx])
        self._assemble_projection_rhs = create_assembly_callable(
            ufl.dot(self.broken_solution.split()[self.vidx], q)*ufl.dx,
            tensor=self._projection_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Finalize ksp setup
        hdiv_projection_ksp.setUp()
        hdiv_projection_ksp.setFromOptions()
        self.hdiv_projection_ksp = hdiv_projection_ksp
示例#6
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError(
                "The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement(
            [ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        shapes = (V[self.vidx].finat_element.space_dimension(),
                  np.prod(V[self.vidx].shape))
        domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
        instructions = """
        for i, j
            w[i,j] = w[i,j] + 1
        end
        """
        self.weight = Function(V[self.vidx])
        par_loop((domain, instructions),
                 ufl.dx, {"w": (self.weight, INC)},
                 is_loopy_kernel=True)

        instructions = """
        for i, j
            vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j]
        end
        """
        self.average_kernel = (domain, instructions)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h +
                     gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError(
                        "Dirichlet conditions for scalar variable not supported. Use a weak bc"
                    )
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError(
                        "Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(
                        as_tuple(subdom, numbers.Integral))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {
                "top", "bottom"
            }
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in sorted(extruded_neumann_subdomains):
                    measures.append({
                        "top": ufl.ds_t,
                        "bottom": ufl.ds_b
                    }[subdomain])
                trace_subdomains.extend(
                    sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
                markers = [int(x) for x in mesh.exterior_facets.unique_markers]
                dirichlet_subdomains = set(markers) - neumann_subdomains
                trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand * measure

            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_bcs,
            form_compiler_parameters=self.ctx.fc_params,
            mat_type=mat_type)

        with timed_region("HybridOperatorAssembly"):
            self._assemble_S()

        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(TraceSpace)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
示例#7
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from ufl.algorithms.map_integrands import map_integrand_dags
        from firedrake import (FunctionSpace, TrialFunction, TrialFunctions,
                               TestFunction, Function, BrokenElement,
                               MixedElement, FacetNormal, Constant,
                               DirichletBC, Projector)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import ArgumentReplacer, split_form

        # Extract the problem context
        prefix = pc.getOptionsPrefix()
        _, P = pc.getOperators()
        context = P.getPythonContext()
        test, trial = context.a.arguments()

        V = test.function_space()
        if V.mesh().cell_set._extruded:
            # TODO: Merge FIAT branch to support TPC trace elements
            raise NotImplementedError("Not implemented on extruded meshes.")

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = [BrokenElement(Vi.ufl_element()) for Vi in V]
        elem = MixedElement(broken_elements)
        V_d = FunctionSpace(V.mesh(), elem)
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}

        # Replace the problems arguments with arguments defined
        # on the new discontinuous spaces
        replacer = ArgumentReplacer(arg_map)
        new_form = map_integrand_dags(replacer, context.a)

        # Create the space of approximate traces.
        # The vector function space will have a non-empty value_shape
        W = next(v for v in V if bool(v.ufl_element().value_shape()))
        if W.ufl_element().family() in ["Raviart-Thomas", "RTCF"]:
            tdegree = W.ufl_element().degree() - 1

        else:
            tdegree = W.ufl_element().degree()

        # NOTE: Once extruded is ready, we will need to be aware of this
        # and construct the appropriate trace space for the HDiv element
        TraceSpace = FunctionSpace(V.mesh(), "HDiv Trace", tdegree)

        # NOTE: For extruded, we will need to add "on_top" and "on_bottom"
        trace_conditions = [
            DirichletBC(TraceSpace, Constant(0.0), "on_boundary")
        ]

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_rhs = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_rhs = Function(V)

        # Create the symbolic Schur-reduction
        Atilde = Tensor(new_form)
        gammar = TestFunction(TraceSpace)
        n = FacetNormal(V.mesh())

        # Vector trial function will have a non-empty ufl_shape
        sigma = next(f for f in TrialFunctions(V_d) if bool(f.ufl_shape))

        # NOTE: Once extruded is ready, this will change slightly
        # to include both horizontal and vertical interior facets
        K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * self.broken_rhs,
            tensor=self.schur_rhs,
            form_compiler_parameters=context.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_conditions,
                                 form_compiler_parameters=context.fc_params)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_conditions,
            form_compiler_parameters=context.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullsp = P.getNullSpace()
        if nullsp.handle != 0:
            new_vecs = get_trace_nullspace_vecs(K * Atilde.inv, nullsp, V, V_d,
                                                TraceSpace)
            tr_nullsp = PETSc.NullSpace().create(vectors=new_vecs,
                                                 comm=pc.comm)
            Smat.setNullSpace(tr_nullsp)

        # Set up the KSP for the system of Lagrange multipliers
        ksp = PETSc.KSP().create(comm=pc.comm)
        ksp.setOptionsPrefix(prefix + "trace_")
        ksp.setTolerances(rtol=1e-13)
        ksp.setOperators(Smat)
        ksp.setUp()
        ksp.setFromOptions()
        self.ksp = ksp

        # Now we construct the local tensors for the reconstruction stage
        # TODO: Add support for mixed tensors and these variables
        # become unnecessary
        split_forms = split_form(new_form)
        A = Tensor(next(sf.form for sf in split_forms if sf.indices == (0, 0)))
        B = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 0)))
        C = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 1)))
        trial = TrialFunction(
            FunctionSpace(V.mesh(), BrokenElement(W.ufl_element())))
        K_local = Tensor(gammar('+') * ufl.dot(trial, n) * ufl.dS)

        # Split functions and reconstruct each bit separately
        sigma_h, u_h = self.broken_solution.split()
        g, f = self.broken_rhs.split()

        # Pressure reconstruction
        M = B * A.inv * B.T + C
        u_sol = M.inv * f + M.inv * (
            B * A.inv * K_local.T * self.trace_solution - B * A.inv * g)
        self._assemble_pressure = create_assembly_callable(
            u_sol, tensor=u_h, form_compiler_parameters=context.fc_params)

        # Velocity reconstruction
        sigma_sol = A.inv * g + A.inv * (B.T * u_h -
                                         K_local.T * self.trace_solution)
        self._assemble_velocity = create_assembly_callable(
            sigma_sol,
            tensor=sigma_h,
            form_compiler_parameters=context.fc_params)

        # Set up the projector for projecting the broken solution
        # into the unbroken finite element spaces
        # NOTE: Tolerance here matters!
        sigma_b, _ = self.broken_solution.split()
        sigma_u, _ = self.unbroken_solution.split()
        self.projector = Projector(sigma_b,
                                   sigma_u,
                                   solver_parameters={
                                       "ksp_type": "cg",
                                       "ksp_rtol": 1e-13
                                   })
示例#8
0
    def initialize(self, pc):
        """Set up the problem context. This takes the incoming
        three-field system and constructs the static
        condensation operators using Slate expressions.

        A KSP is created for the reduced system. The eliminated
        variables are recovered via back-substitution.
        """

        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.bcs import DirichletBC
        from firedrake.function import Function
        from firedrake.functionspace import FunctionSpace
        from firedrake.interpolation import interpolate

        prefix = pc.getOptionsPrefix() + "condensed_field_"
        A, P = pc.getOperators()
        self.cxt = A.getPythonContext()
        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        self.bilinear_form = self.cxt.a

        # Retrieve the mixed function space
        W = self.bilinear_form.arguments()[0].function_space()
        if len(W) > 3:
            raise NotImplementedError("Only supports up to three function spaces.")

        elim_fields = PETSc.Options().getString(pc.getOptionsPrefix()
                                                + "pc_sc_eliminate_fields",
                                                None)
        if elim_fields:
            elim_fields = [int(i) for i in elim_fields.split(',')]
        else:
            # By default, we condense down to the last field in the
            # mixed space.
            elim_fields = [i for i in range(0, len(W) - 1)]

        condensed_fields = list(set(range(len(W))) - set(elim_fields))
        if len(condensed_fields) != 1:
            raise NotImplementedError("Cannot condense to more than one field")

        c_field, = condensed_fields

        # Need to duplicate a space which is NOT
        # associated with a subspace of a mixed space.
        Vc = FunctionSpace(W.mesh(), W[c_field].ufl_element())
        bcs = []
        cxt_bcs = self.cxt.row_bcs
        for bc in cxt_bcs:
            if bc.function_space().index != c_field:
                raise NotImplementedError("Strong BC set on unsupported space")
            if isinstance(bc.function_arg, Function):
                bc_arg = interpolate(bc.function_arg, Vc)
            else:
                # Constants don't need to be interpolated
                bc_arg = bc.function_arg
            bcs.append(DirichletBC(Vc, bc_arg, bc.sub_domain))

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        self.c_field = c_field
        self.condensed_rhs = Function(Vc)
        self.residual = Function(W)
        self.solution = Function(W)

        # Get expressions for the condensed linear system
        A_tensor = Tensor(self.bilinear_form)
        reduced_sys = self.condensed_system(A_tensor, self.residual, elim_fields)
        S_expr = reduced_sys.lhs
        r_expr = reduced_sys.rhs

        # Construct the condensed right-hand side
        self._assemble_Srhs = create_assembly_callable(
            r_expr,
            tensor=self.condensed_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Allocate and set the condensed operator
        self.S = allocate_matrix(S_expr,
                                 bcs=bcs,
                                 form_compiler_parameters=self.cxt.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix,
                                 appctx=self.get_appctx(pc))

        self._assemble_S = create_assembly_callable(
            S_expr,
            tensor=self.S,
            bcs=bcs,
            form_compiler_parameters=self.cxt.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        Smat = self.S.petscmat

        # If a different matrix is used for preconditioning,
        # assemble this as well
        if A != P:
            self.cxt_pc = P.getPythonContext()
            P_tensor = Tensor(self.cxt_pc.a)
            P_reduced_sys = self.condensed_system(P_tensor,
                                                  self.residual,
                                                  elim_fields)
            S_pc_expr = P_reduced_sys.lhs
            self.S_pc_expr = S_pc_expr

            # Allocate and set the condensed operator
            self.S_pc = allocate_matrix(S_expr,
                                        bcs=bcs,
                                        form_compiler_parameters=self.cxt.fc_params,
                                        mat_type=mat_type,
                                        options_prefix=prefix,
                                        appctx=self.get_appctx(pc))

            self._assemble_S_pc = create_assembly_callable(
                S_pc_expr,
                tensor=self.S_pc,
                bcs=bcs,
                form_compiler_parameters=self.cxt.fc_params,
                mat_type=mat_type)

            self._assemble_S_pc()
            Smat_pc = self.S_pc.petscmat

        else:
            self.S_pc_expr = S_expr
            Smat_pc = Smat

        # Get nullspace for the condensed operator (if any).
        # This is provided as a user-specified callback which
        # returns the basis for the nullspace.
        nullspace = self.cxt.appctx.get("condensed_field_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(Vc)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Create a SNESContext for the DM associated with the trace problem
        self._ctx_ref = self.new_snes_ctx(pc,
                                          S_expr,
                                          bcs,
                                          mat_type,
                                          self.cxt.fc_params,
                                          options_prefix=prefix)

        # Push new context onto the dm associated with the condensed problem
        c_dm = Vc.dm

        # Set up ksp for the condensed problem
        c_ksp = PETSc.KSP().create(comm=pc.comm)
        c_ksp.incrementTabLevel(1, parent=pc)

        # Set the dm for the condensed solver
        c_ksp.setDM(c_dm)
        c_ksp.setDMActive(False)
        c_ksp.setOptionsPrefix(prefix)
        c_ksp.setOperators(A=Smat, P=Smat_pc)
        self.condensed_ksp = c_ksp

        with dmhooks.add_hooks(c_dm, self,
                               appctx=self._ctx_ref,
                               save=False):
            c_ksp.setFromOptions()

        # Set up local solvers for backwards substitution
        self.local_solvers = self.local_solver_calls(A_tensor,
                                                     self.residual,
                                                     self.solution,
                                                     elim_fields)
示例#9
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC, assemble)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()

        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.cxt.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        # Set up the KSP for the hdiv residual projection
        hdiv_mass_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_mass_ksp.setOptionsPrefix(prefix + "hdiv_residual_")

        # HDiv mass operator
        p = TrialFunction(V[self.vidx])
        q = TestFunction(V[self.vidx])
        mass = ufl.dot(p, q)*ufl.dx
        # TODO: Bcs?
        M = assemble(mass, bcs=None, form_compiler_parameters=self.cxt.fc_params)
        M.force_evaluation()
        Mmat = M.petscmat

        hdiv_mass_ksp.setOperators(Mmat)
        hdiv_mass_ksp.setUp()
        hdiv_mass_ksp.setFromOptions()
        self.hdiv_mass_ksp = hdiv_mass_ksp

        # Storing the result of A.inv * r, where A is the HDiv
        # mass matrix and r is the HDiv residual
        self._primal_r = Function(V[self.vidx])

        tau = TestFunction(V_d[self.vidx])
        self._assemble_broken_r = create_assembly_callable(
            ufl.dot(self._primal_r, tau)*ufl.dx,
            tensor=self.broken_residual.split()[self.vidx],
            form_compiler_parameters=self.cxt.fc_params)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.cxt.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.dot(sigma, n) * ufl.dS_h +
                     gammar('+') * ufl.dot(sigma, n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.cxt.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.cxt.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError("Dirichlet conditions for scalar variable not supported. Use a weak bc")
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError("Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(as_tuple(subdom, int))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {"top", "bottom"}
            neumann_subdomains = neumann_subdomains.difference(extruded_neumann_subdomains)

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in extruded_neumann_subdomains:
                    measures.append({"top": ufl.ds_t, "bottom": ufl.ds_b}[subdomain])
                trace_subdomains.extend(sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.append(ds(tuple(neumann_subdomains)))
                dirichlet_subdomains = set(mesh.exterior_facets.unique_markers) - neumann_subdomains
                trace_subdomains.append(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand*measure

            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.cxt.fc_params)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.cxt.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullspace = create_schur_nullspace(P, -K * Atilde,
                                           V, V_d, TraceSpace,
                                           pc.comm)
        if nullspace:
            Smat.setNullSpace(nullspace)

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)

        # NOTE: The projection stage *might* be replaced by a Fortin
        # operator. We may want to allow the user to specify if they
        # wish to use a Fortin operator over a projection, or vice-versa.
        # In a future add-on, we can add a switch which chooses either
        # the Fortin reconstruction or the usual KSP projection.

        # Set up the projection KSP
        hdiv_projection_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_projection_ksp.setOptionsPrefix(prefix + 'hdiv_projection_')

        # Reuse the mass operator from the hdiv_mass_ksp
        hdiv_projection_ksp.setOperators(Mmat)

        # Construct the RHS for the projection stage
        self._projection_rhs = Function(V[self.vidx])
        self._assemble_projection_rhs = create_assembly_callable(
            ufl.dot(self.broken_solution.split()[self.vidx], q)*ufl.dx,
            tensor=self._projection_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Finalize ksp setup
        hdiv_projection_ksp.setUp()
        hdiv_projection_ksp.setFromOptions()
        self.hdiv_projection_ksp = hdiv_projection_ksp
示例#10
0
    def _slate_expressions(self):
        """Returns all the relevant Slate expressions
        for the static condensation and local recovery
        procedures.
        """
        # This operator has the form:
        # | A  B  C |
        # | D  E  F |
        # | G  H  J |
        # NOTE: It is often the case that D = B.T,
        # G = C.T, H = F.T, and J = 0, but we're not making
        # that assumption here.
        _O = Tensor(self.cxt.a)
        O = _O.blocks

        # Extract sub-block:
        # | A B |
        # | D E |
        # which has block row indices (0, 1) and block
        # column indices (0, 1) as well.
        M = O[:2, :2]

        # Extract sub-block:
        # | C |
        # | F |
        # which has block row indices (0, 1) and block
        # column indices (2,)
        K = O[:2, 2]

        # Extract sub-block:
        # | G H |
        # which has block row indices (2,) and block column
        # indices (0, 1)
        L = O[2, :2]

        # And the final block J has block row-column
        # indices (2, 2)
        J = O[2, 2]

        # Schur complement for traces
        S = J - L * M.inv * K

        # Create mixed function for residual computation.
        # This projects the non-trace residual bits into
        # the trace space:
        # -L * M.inv * | v1 v2 |^T
        _R = AssembledVector(self.residual)
        R = _R.blocks
        v1v2 = R[:2]
        v3 = R[2]
        r_lambda = v3 - L * M.inv * v1v2

        # Reconstruction expressions
        q_h, u_h, lambda_h = self.solution.split()

        # Local tensors needed for reconstruction
        A = O[0, 0]
        B = O[0, 1]
        C = O[0, 2]
        D = O[1, 0]
        E = O[1, 1]
        F = O[1, 2]
        Se = E - D * A.inv * B
        Sf = F - D * A.inv * C

        v1, v2, v3 = self.residual.split()

        # Solve locally using Cholesky factorizations
        # (Se and A are symmetric positive definite)
        u_h_expr = Se.solve(AssembledVector(v2) -
                            D * A.inv * AssembledVector(v1) -
                            Sf * AssembledVector(lambda_h),
                            decomposition="LLT")

        q_h_expr = A.solve(AssembledVector(v1) - B * AssembledVector(u_h) -
                           C * AssembledVector(lambda_h),
                           decomposition="LLT")

        return (S, r_lambda, u_h_expr, q_h_expr)
示例#11
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        H1-problem and partition the spaces/functions
        into 'interior' and 'facet' parts.

        A KSP is created for the reduced system after
        static condensation is applied.
        """
        from firedrake import (FunctionSpace, Function, TrialFunction,
                               TestFunction)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from ufl.algorithms.replace import replace

        # Extract python context
        prefix = pc.getOptionsPrefix() + "static_condensation_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()

        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        test, trial = self.cxt.a.arguments()
        V = test.function_space()
        mesh = V.mesh()

        if len(V) > 1:
            raise ValueError("Cannot use this PC for mixed problems.")

        if V.ufl_element().sobolev_space().name != "H1":
            raise ValueError("Expecting an H1-conforming element.")

        if not V.ufl_element().cell().is_simplex():
            raise NotImplementedError("Only simplex meshes are implemented.")

        top_dim = V.finat_element._element.ref_el.get_dimension()
        if not V.finat_element.entity_dofs()[top_dim][0]:
            raise RuntimeError("There are no interior dofs to eliminate.")

        # We decompose the space into an interior part and facet part
        interior_element = V.ufl_element()["interior"]
        facet_element = V.ufl_element()["facet"]
        V_int = FunctionSpace(mesh, interior_element)
        V_facet = FunctionSpace(mesh, facet_element)

        # Get transfer kernel for moving data
        self._transfer_kernel = get_transfer_kernels({
            'h1-space': V,
            'interior-space': V_int,
            'facet-space': V_facet
        })

        # Set up functions for the H1 functions and the interior/trace parts
        self.trace_solution = Function(V_facet)
        self.interior_solution = Function(V_int)
        self.h1_solution = Function(V)
        self.h1_residual = Function(V)
        self.interior_residual = Function(V_int)
        self.trace_residual = Function(V_facet)

        # TODO: Handle strong bcs in Slate
        if self.cxt.row_bcs:
            raise NotImplementedError("Strong bcs not implemented yet")

        self.bcs = None

        A00 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_int),
                trial: TrialFunction(V_int)
            }))
        A01 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_int),
                trial: TrialFunction(V_facet)
            }))
        A10 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_facet),
                trial: TrialFunction(V_int)
            }))
        A11 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_facet),
                trial: TrialFunction(V_facet)
            }))

        # Schur complement operator
        S = A11 - A10 * A00.inv * A01
        self.S = allocate_matrix(S,
                                 bcs=self.bcs,
                                 form_compiler_parameters=self.cxt.fc_params)
        self._assemble_S = create_assembly_callable(
            S,
            tensor=self.S,
            bcs=self.bcs,
            form_compiler_parameters=self.cxt.fc_params)

        self._assemble_S()
        Smat = self.S.petscmat

        # Nullspace for the reduced system
        nullspace = create_sc_nullspace(P, V, V_facet, pc.comm)

        if nullspace:
            Smat.setNullSpace(nullspace)

        # Set up KSP for the reduced problem
        sc_ksp = PETSc.KSP().create(comm=pc.comm)
        sc_ksp.setOptionsPrefix(prefix)
        sc_ksp.setOperators(Smat)
        sc_ksp.setUp()
        sc_ksp.setFromOptions()
        self.sc_ksp = sc_ksp

        # Set up rhs for the reduced problem
        F0 = AssembledVector(self.interior_residual)
        self.sc_rhs = Function(V_facet)
        self.sc_rhs_thunk = Function(V_facet)
        self._assemble_sc_rhs_thunk = create_assembly_callable(
            -A10 * A00.inv * F0,
            tensor=self.sc_rhs_thunk,
            form_compiler_parameters=self.cxt.fc_params)

        # Reconstruction calls
        u_facet = AssembledVector(self.trace_solution)
        self._assemble_interior_u = create_assembly_callable(
            A00.inv * (F0 - A01 * u_facet),
            tensor=self.interior_solution,
            form_compiler_parameters=self.cxt.fc_params)