示例#1
0
class SawyerEliassenU(DiagnosticField):
    name = "SawyerEliassenU"

    def setup(self, state):

        space = state.spaces("HDiv")
        super(SawyerEliassenU, self).setup(state, space=space)

        u = state.fields("u")
        b = state.fields("b")
        v = inner(u, as_vector([0., 1., 0.]))

        # spaces
        V0 = FunctionSpace(state.mesh, "CG", 2)
        Vu = u.function_space()

        # project b to V0
        self.b_v0 = Function(V0)
        btri = TrialFunction(V0)
        btes = TestFunction(V0)
        a = inner(btes, btri) * dx
        L = inner(btes, b) * dx
        projectbproblem = LinearVariationalProblem(a, L, self.b_v0)
        self.project_b_solver = LinearVariationalSolver(
            projectbproblem, solver_parameters={'ksp_type': 'cg'})

        # project v to V0
        self.v_v0 = Function(V0)
        vtri = TrialFunction(V0)
        vtes = TestFunction(V0)
        a = inner(vtes, vtri) * dx
        L = inner(vtes, v) * dx
        projectvproblem = LinearVariationalProblem(a, L, self.v_v0)
        self.project_v_solver = LinearVariationalSolver(
            projectvproblem, solver_parameters={'ksp_type': 'cg'})

        # stm/psi is a stream function
        self.stm = Function(V0)
        psi = TrialFunction(V0)
        xsi = TestFunction(V0)

        f = state.parameters.f
        H = state.parameters.H
        L = state.parameters.L
        dbdy = state.parameters.dbdy
        x, y, z = SpatialCoordinate(state.mesh)

        bcs = [DirichletBC(V0, 0., "bottom"), DirichletBC(V0, 0., "top")]

        Mat = as_matrix([[b.dx(2), 0., -f * self.v_v0.dx(2)], [0., 0., 0.],
                         [-self.b_v0.dx(0), 0., f**2 + f * self.v_v0.dx(0)]])

        Equ = (inner(grad(xsi), dot(Mat, grad(psi))) -
               dbdy * inner(grad(xsi), as_vector([-v, 0., f *
                                                  (z - H / 2)]))) * dx

        # fourth-order terms
        if state.parameters.fourthorder:
            eps = Constant(0.0001)
            brennersigma = Constant(10.0)
            n = FacetNormal(state.mesh)
            deltax = Constant(state.parameters.deltax)
            deltaz = Constant(state.parameters.deltaz)

            nn = as_matrix([[sqrt(brennersigma / Constant(deltax)), 0., 0.],
                            [0., 0., 0.],
                            [0., 0.,
                             sqrt(brennersigma / Constant(deltaz))]])

            mu = as_matrix([[1., 0., 0.], [0., 0., 0.], [0., 0., H / L]])

            # anisotropic form
            Equ += eps * (
                div(dot(mu, grad(psi))) * div(dot(mu, grad(xsi))) * dx -
                (avg(dot(dot(grad(grad(psi)), n), n)) * jump(grad(xsi), n=n) +
                 avg(dot(dot(grad(grad(xsi)), n), n)) * jump(grad(psi), n=n) -
                 jump(nn * grad(psi), n=n) * jump(nn * grad(xsi), n=n)) *
                (dS_h + dS_v))

        Au = lhs(Equ)
        Lu = rhs(Equ)
        stmproblem = LinearVariationalProblem(Au, Lu, self.stm, bcs=bcs)
        self.stream_function_solver = LinearVariationalSolver(
            stmproblem, solver_parameters={'ksp_type': 'cg'})

        # solve for sawyer_eliassen u
        self.u = Function(Vu)
        utrial = TrialFunction(Vu)
        w = TestFunction(Vu)
        a = inner(w, utrial) * dx
        L = (w[0] * (-self.stm.dx(2)) + w[2] * (self.stm.dx(0))) * dx
        ugproblem = LinearVariationalProblem(a, L, self.u)
        self.sawyer_eliassen_u_solver = LinearVariationalSolver(
            ugproblem, solver_parameters={'ksp_type': 'cg'})

    def compute(self, state):
        self.project_b_solver.solve()
        self.project_v_solver.solve()
        self.stream_function_solver.solve()
        self.sawyer_eliassen_u_solver.solve()
        sawyer_eliassen_u = self.u
        return self.field.project(sawyer_eliassen_u)
    def __init__(self, diagnostic_variables, prognostic_variables, outputting,
                 simulation_parameters):

        self.diagnostic_variables = diagnostic_variables
        self.prognostic_variables = prognostic_variables
        self.outputting = outputting
        self.simulation_parameters = simulation_parameters
        Dt = Constant(simulation_parameters['dt'][-1])
        Ld = simulation_parameters['Ld'][-1]
        u = self.prognostic_variables.u
        Xi = self.prognostic_variables.dXi
        Vu = u.function_space()
        vector_u = True if Vu.ufl_element() == VectorElement else False
        ones = Function(
            VectorFunctionSpace(self.prognostic_variables.mesh, "CG",
                                1)).project(as_vector([Constant(1.0)]))
        self.to_update_constants = False
        self.interpolators = []
        self.projectors = []
        self.solvers = []

        mesh = u.function_space().mesh()
        x, = SpatialCoordinate(mesh)
        alphasq = simulation_parameters['alphasq'][-1]
        periodic = simulation_parameters['periodic'][-1]

        # do peakon data checks here
        true_peakon_data = simulation_parameters['true_peakon_data'][-1]
        if true_peakon_data is not None:
            self.true_peakon_file = Dataset(
                'results/' + true_peakon_data + '/data.nc', 'r')
            # check length of file is correct
            ndump = simulation_parameters['ndump'][-1]
            tmax = simulation_parameters['tmax'][-1]
            dt = simulation_parameters['dt'][-1]
            if len(self.true_peakon_file['time'][:]) != int(tmax /
                                                            (ndump * dt)) + 1:
                raise ValueError(
                    'If reading in true peakon data, the dump frequency must be the same as that used for the true peakon data.'
                    +
                    ' Length of true peakon data as %i, but proposed length is %i'
                    % (len(self.true_peakon_file['time'][:]),
                       int(tmax / (ndump * dt)) + 1))
            if self.true_peakon_file['p'][:].shape != (int(tmax /
                                                           (ndump * dt)) +
                                                       1, ):
                raise ValueError(
                    'True peakon data shape %i must be the same shape as proposed data %i'
                    % ((int(tmax / (ndump * dt)) + 1, ),
                       self.true_peakon_file['p'][:].shape))

        # do peakon data checks here
        true_mean_peakon_data = simulation_parameters['true_mean_peakon_data'][
            -1]
        if true_mean_peakon_data is not None:
            self.true_mean_peakon_file = Dataset(
                'results/' + true_mean_peakon_data + '/data.nc', 'r')
            # check length of file is correct
            ndump = simulation_parameters['ndump'][-1]
            tmax = simulation_parameters['tmax'][-1]
            dt = simulation_parameters['dt'][-1]
            if len(self.true_mean_peakon_file['time'][:]) != int(tmax /
                                                                 (ndump * dt)):
                raise ValueError(
                    'If reading in true peakon data, the dump frequency must be the same as that used for the true peakon data.'
                )
            if self.true_mean_peakon_file['p'][:].shape != (int(
                    tmax / (ndump * dt)), ):
                raise ValueError(
                    'True peakon data must have same shape as proposed data!')

        for key, value in self.diagnostic_variables.fields.items():

            if key == 'uscalar':
                uscalar = self.diagnostic_variables.fields['uscalar']
                u_interpolator = Interpolator(dot(ones, u), uscalar)
                self.interpolators.append(u_interpolator)

            elif key == 'Euscalar':
                Eu = self.prognostic_variables.Eu
                Euscalar = self.diagnostic_variables.fields['Euscalar']
                Eu_interpolator = Interpolator(dot(ones, Eu), Euscalar)
                self.interpolators.append(Eu_interpolator)

            elif key == 'Xiscalar':
                Xi = self.prognostic_variables.dXi
                Xiscalar = self.diagnostic_variables.fields['Xiscalar']
                Xi_interpolator = Interpolator(dot(ones, Xi), Xiscalar)
                self.interpolators.append(Xi_interpolator)

            elif key == 'du':
                if type(u.function_space().ufl_element()) == VectorElement:
                    u_to_project = self.diagnostic_variables.fields['uscalar']
                else:
                    u_to_project = u
                du = self.diagnostic_variables.fields['du']
                du_projector = Projector(u_to_project.dx(0), du)
                self.projectors.append(du_projector)

            elif key == 'jump_du':
                du = self.diagnostic_variables.fields['du']
                jump_du = self.diagnostic_variables.fields['jump_du']
                V = jump_du.function_space()
                jtrial = TrialFunction(V)
                psi = TestFunction(V)
                Lj = psi('+') * abs(jump(du)) * dS
                aj = psi('+') * jtrial('+') * dS
                jprob = LinearVariationalProblem(aj, Lj, jump_du)
                jsolver = LinearVariationalSolver(jprob)
                self.solvers.append(jsolver)

            elif key == 'du_smooth':
                du = self.diagnostic_variables.fields['du']
                du_smooth = self.diagnostic_variables.fields['du_smooth']
                projector = Projector(du, du_smooth)
                self.projectors.append(projector)

            elif key == 'u2_flux':
                gamma = simulation_parameters['gamma'][-1]
                u2_flux = self.diagnostic_variables.fields['u2_flux']
                xis = self.prognostic_variables.pure_xi_list
                xis_x = []
                xis_xxx = []
                CG1 = FunctionSpace(mesh, "CG", 1)
                psi = TestFunction(CG1)
                for xi in xis:
                    xis_x.append(Function(CG1).project(xi.dx(0)))
                for xi_x in xis_x:
                    xi_xxx = Function(CG1)
                    form = (psi * xi_xxx + psi.dx(0) * xi_x.dx(0)) * dx
                    prob = NonlinearVariationalProblem(form, xi_xxx)
                    solver = NonlinearVariationalSolver(prob)
                    solver.solve()
                    xis_xxx.append(xi_xxx)

                flux_expr = 0.0 * x
                for xi, xi_x, xi_xxx in zip(xis, xis_x, xis_xxx):
                    flux_expr += (6 * u.dx(0) * xi + 12 * u * xi_x + gamma *
                                  xi_xxx) * (6 * u.dx(0) * xi + 24 * u * xi_x +
                                             gamma * xi_xxx)
                projector = Projector(flux_expr, u2_flux)
                self.projectors.append(projector)

            elif key == 'a':
                # find  6 * u_x * Xi + gamma * Xi_xxx
                mesh = u.function_space().mesh()
                gamma = simulation_parameters['gamma'][-1]
                a_flux = self.diagnostic_variables.fields['a']
                xis = self.prognostic_variables.pure_xis
                xis_x = []
                xis_xxx = []
                CG1 = FunctionSpace(mesh, "CG", 1)
                psi = TestFunction(CG1)
                for xi in xis:
                    xis_x.append(Function(CG1).project(xi.dx(0)))
                for xi_x in xis_x:
                    xi_xxx = Function(CG1)
                    form = (psi * xi_xxx + psi.dx(0) * xi_x.dx(0)) * dx
                    prob = NonlinearVariationalProblem(form, xi_xxx)
                    solver = NonlinearVariationalSolver(prob)
                    solver.solve()
                    xis_xxx.append(xi_xxx)

                x, = SpatialCoordinate(mesh)
                a_expr = 0.0 * x
                for xi, xi_x, xi_xxx in zip(xis, xis_x, xis_xxx):
                    a_expr += 6 * u.dx(0) * xi + gamma * xi_xxx
                projector = Projector(a_expr, a_flux)
                self.projectors.append(projector)

            elif key == 'b':
                # find 12 * u * Xi_x
                mesh = u.function_space().mesh()
                gamma = simulation_parameters['gamma'][-1]
                b_flux = self.diagnostic_variables.fields['b']
                xis = self.prognostic_variables.pure_xis

                x, = SpatialCoordinate(mesh)
                b_expr = 0.0 * x
                for xi, xi_x, xi_xxx in zip(xis, xis_x, xis_xxx):
                    b_expr += 12 * u * xi.dx(0)
                projector = Projector(b_expr, b_flux)
                self.projectors.append(projector)

            elif key == 'kdv_1':
                # find the first part of the kdv form
                u0 = prognostic_variables.u0
                uh = (u + u0) / 2
                us = Dt * uh + sqrt(Dt) * Xi
                psi = TestFunction(Vu)
                du_1 = self.diagnostic_variables.fields['kdv_1']

                eqn = psi * du_1 * dx - 6 * psi.dx(0) * uh * us * dx
                prob = NonlinearVariationalProblem(eqn, du_1)
                solver = NonlinearVariationalSolver(prob)
                self.solvers.append(solver)

            elif key == 'kdv_2':
                # find the second part of the kdv form
                u0 = prognostic_variables.u0
                uh = (u + u0) / 2
                us = Dt * uh + sqrt(Dt) * Xi
                psi = TestFunction(Vu)
                du_2 = self.diagnostic_variables.fields['kdv_2']

                eqn = psi * du_2 * dx + 6 * psi * uh * us.dx(0) * dx
                prob = NonlinearVariationalProblem(eqn, du_2)
                solver = NonlinearVariationalSolver(prob)
                self.solvers.append(solver)

            elif key == 'kdv_3':
                # find the third part of the kdv form
                u0 = prognostic_variables.u0
                uh = (u + u0) / 2
                us = Dt * uh + sqrt(Dt) * Xi
                du_3 = self.diagnostic_variables.fields['kdv_3']
                gamma = simulation_parameters['gamma'][-1]

                phi = TestFunction(Vu)
                F = Function(Vu)

                eqn = (phi * F * dx + phi.dx(0) * us.dx(0) * dx)
                prob = NonlinearVariationalProblem(eqn, F)
                solver = NonlinearVariationalSolver(prob)
                self.solvers.append(solver)

                self.projectors.append(Projector(-gamma * F.dx(0), du_3))

                # nu = TestFunction(Vu)
                # back_eqn = nu * du_3 * dx - gamma * nu.dx(0) * F * dx
                # back_prob = NonlinearVariationalProblem(back_eqn, du_3)
                # back_solver = NonlinearVariationalSolver(back_prob)
                # self.solvers.append(solver)

            elif key == 'm':

                m = self.diagnostic_variables.fields['m']
                phi = TestFunction(Vu)
                eqn = phi * m * dx - phi * u * dx - alphasq * phi.dx(0) * u.dx(
                    0) * dx
                prob = NonlinearVariationalProblem(eqn, m)
                solver = NonlinearVariationalSolver(prob)
                self.solvers.append(solver)

            elif key == 'u_xx':

                u_xx = self.diagnostic_variables.fields['u_xx']
                phi = TestFunction(Vu)
                eqn = phi * u_xx * dx + phi.dx(0) * u_xx.dx(0) * dx
                prob = NonlinearVariationalProblem(eqn, u_xx)
                solver = NonlinearVariationalSolver(prob)
                self.solvers.append(solver)

            elif key == 'u_sde':
                self.to_update_constants = True
                self.Ld = Ld
                self.alphasq = alphasq
                self.p = Constant(1.0 * 0.5 * (1 + exp(-Ld / sqrt(alphasq))) /
                                  (1 - exp(-Ld / sqrt(alphasq))))
                self.q = Constant(Ld / 2)

                u_sde = self.diagnostic_variables.fields['u_sde']
                if periodic:
                    expr = conditional(
                        x < self.q - Ld / 2,
                        self.p * ((exp(-(x - self.q + Ld) / sqrt(alphasq)) +
                                   exp(-Ld / sqrt(alphasq)) * exp(
                                       (x - self.q + Ld) / sqrt(alphasq))) /
                                  (1 - exp(-Ld / sqrt(alphasq)))),
                        conditional(
                            x < self.q + Ld / 2,
                            self.p * ((exp(-sqrt((self.q - x)**2 / alphasq)) +
                                       exp(-Ld / sqrt(alphasq)) *
                                       exp(sqrt((self.q - x)**2 / alphasq))) /
                                      (1 - exp(-Ld / sqrt(alphasq)))),
                            self.p *
                            ((exp(-(self.q + Ld - x) / sqrt(alphasq)) +
                              exp(-Ld / sqrt(alphasq) * exp(
                                  (self.q + Ld - x) / sqrt(alphasq)))) /
                             (1 - exp(-Ld / sqrt(alphasq))))))
                else:
                    expr = conditional(
                        x < self.q - Ld / 2,
                        self.p * exp(-(x - self.q + Ld) / sqrt(alphasq)),
                        conditional(
                            x < self.q + Ld / 2,
                            self.p * exp(-sqrt((self.q - x)**2 / alphasq)),
                            self.p * exp(-(self.q + Ld - x) / sqrt(alphasq))))

                self.interpolators.append(Interpolator(expr, u_sde))

            elif key == 'u_sde_weak':
                u_sde = self.diagnostic_variables.fields['u_sde']
                u_sde_weak = self.diagnostic_variables.fields['u_sde_weak']
                psi = TestFunction(Vu)

                eqn = psi * u_sde_weak * dx - psi * (u - u_sde) * dx
                prob = NonlinearVariationalProblem(eqn, u_sde_weak)
                solver = NonlinearVariationalSolver(prob)
                self.solvers.append(solver)

            elif key == 'u_sde_mean':
                self.to_update_constants = True
                self.p = Constant(1.0)
                self.q = Constant(Ld / 2)

                if periodic:
                    raise NotImplementedError(
                        'u_sde_mean not yet implemented for periodic peakon')

                u_sde = self.diagnostic_variables.fields['u_sde_mean']
                expr = conditional(
                    x < self.q - Ld / 2,
                    self.p * exp(-(x - self.q + Ld) / sqrt(alphasq)),
                    conditional(
                        x < self.q + Ld / 2,
                        self.p * exp(-sqrt((self.q - x)**2 / alphasq)),
                        self.p * exp(-(self.q + Ld - x) / sqrt(alphasq))))
                self.interpolators.append(Interpolator(expr, u_sde))

            elif key == 'u_sde_weak_mean':
                u_sde = self.diagnostic_variables.fields['u_sde_mean']
                u_sde_weak = self.diagnostic_variables.fields[
                    'u_sde_weak_mean']
                psi = TestFunction(Vu)

                eqn = psi * u_sde_weak * dx - psi * (u - u_sde) * dx
                prob = NonlinearVariationalProblem(eqn, u_sde_weak)
                solver = NonlinearVariationalSolver(prob)
                self.solvers.append(solver)

            elif key == 'pure_xi':
                pure_xi = 0.0 * x
                for xi in self.prognostic_variables.pure_xi_list:
                    if vector_u:
                        pure_xi += dot(ones, xi)
                    else:
                        pure_xi += xi
                Xiscalar = self.diagnostic_variables.fields['pure_xi']
                Xi_interpolator = Interpolator(pure_xi, Xiscalar)
                self.interpolators.append(Xi_interpolator)

            elif key == 'pure_xi_x':
                pure_xi_x = 0.0 * x
                for xix in self.prognostic_variables.pure_xi_x_list:
                    if vector_u:
                        pure_xi_x += dot(ones, xix)
                    else:
                        pure_xi_x += xix
                Xiscalar = self.diagnostic_variables.fields['pure_xi_x']
                Xi_interpolator = Interpolator(pure_xi_x, Xiscalar)
                self.interpolators.append(Xi_interpolator)

            elif key == 'pure_xi_xx':
                pure_xi_xx = 0.0 * x
                for xixx in self.prognostic_variables.pure_xi_xx_list:
                    if vector_u:
                        pure_xi_xx += dot(ones, xixx)
                    else:
                        pure_xi_xx += xixx
                Xiscalar = self.diagnostic_variables.fields['pure_xi_xx']
                Xi_interpolator = Interpolator(pure_xi_xx, Xiscalar)
                self.interpolators.append(Xi_interpolator)

            elif key == 'pure_xi_xxx':
                pure_xi_xxx = 0.0 * x
                for xixxx in self.prognostic_variables.pure_xi_xxx_list:
                    if vector_u:
                        pure_xi_xxx += dot(ones, xixxx)
                    else:
                        pure_xi_xxx += xixxx
                Xiscalar = self.diagnostic_variables.fields['pure_xi_xxx']
                Xi_interpolator = Interpolator(pure_xi_xxx, Xiscalar)
                self.interpolators.append(Xi_interpolator)

            elif key == 'pure_xi_xxxx':
                pure_xi_xxxx = 0.0 * x
                for xixxxx in self.prognostic_variables.pure_xi_xx_list:
                    if vector_u:
                        pure_xi_xxxx += dot(ones, xixxxx)
                    else:
                        pure_xi_xxxx += xixxxx
                Xiscalar = self.diagnostic_variables.fields['pure_xi_xxxx']
                Xi_interpolator = Interpolator(pure_xi_xxxx, Xiscalar)
                self.interpolators.append(Xi_interpolator)

            else:
                raise NotImplementedError('Diagnostic %s not yet implemented' %
                                          key)