def _setup_solver(self): state = self.state H = state.parameters.H g = state.parameters.g beta = state.timestepping.dt*state.timestepping.alpha # Split up the rhs vector (symbolically) u_in, D_in = split(state.xrhs) W = state.W w, phi = TestFunctions(W) u, D = TrialFunctions(W) eqn = ( inner(w, u) - beta*g*div(w)*D - inner(w, u_in) + phi*D + beta*H*phi*div(u) - phi*D_in )*dx aeqn = lhs(eqn) Leqn = rhs(eqn) # Place to put result of u rho solver self.uD = Function(W) # Solver for u, D uD_problem = LinearVariationalProblem( aeqn, Leqn, self.state.dy) self.uD_solver = LinearVariationalSolver(uD_problem, solver_parameters=self.solver_parameters, options_prefix='SWimplicit')
def incompressible_hydrostatic_balance(state, b0, p0, top=False, params=None): # get F Vu = state.spaces("HDiv") Vv = FunctionSpace(state.mesh, Vu.ufl_element()._elements[-1]) v = TrialFunction(Vv) w = TestFunction(Vv) if top: bstring = "top" else: bstring = "bottom" bcs = [DirichletBC(Vv, 0.0, bstring)] a = inner(w, v) * dx L = inner(state.k, w) * b0 * dx F = Function(Vv) solve(a == L, F, bcs=bcs) # define mixed function space VDG = state.spaces("DG") WV = (Vv) * (VDG) # get pprime v, pprime = TrialFunctions(WV) w, phi = TestFunctions(WV) bcs = [DirichletBC(WV[0], zero(), bstring)] a = (inner(w, v) + div(w) * pprime + div(v) * phi) * dx L = phi * div(F) * dx w1 = Function(WV) if params is None: params = { 'ksp_type': 'gmres', 'pc_type': 'fieldsplit', 'pc_fieldsplit_type': 'schur', 'pc_fieldsplit_schur_fact_type': 'full', 'pc_fieldsplit_schur_precondition': 'selfp', 'fieldsplit_1_ksp_type': 'preonly', 'fieldsplit_1_pc_type': 'gamg', 'fieldsplit_1_mg_levels_pc_type': 'bjacobi', 'fieldsplit_1_mg_levels_sub_pc_type': 'ilu', 'fieldsplit_0_ksp_type': 'richardson', 'fieldsplit_0_ksp_max_it': 4, 'ksp_atol': 1.e-08, 'ksp_rtol': 1.e-08 } solve(a == L, w1, bcs=bcs, solver_parameters=params) v, pprime = w1.split() p0.project(pprime)
def __init__(self, field_names, state, family, degree, terms_to_linearise=None, no_normal_flow_bc_ids=None, active_tracers=None): self.field_names = field_names self.active_tracers = active_tracers self.terms_to_linearise = {} if terms_to_linearise is None else terms_to_linearise # Build finite element spaces self.spaces = [ space for space in self._build_spaces(state, family, degree) ] # Add active tracers to the list of prognostics if active_tracers is None: active_tracers = [] self.add_tracers_to_prognostics(state, active_tracers) # Make the full mixed function space W = MixedFunctionSpace(self.spaces) # Can now call the underlying PrognosticEquation full_field_name = "_".join(self.field_names) super().__init__(state, W, full_field_name) # Set up test functions, trials and prognostics self.tests = TestFunctions(W) self.trials = TrialFunctions(W) self.X = Function(W) # Set up no-normal-flow boundary conditions if no_normal_flow_bc_ids is None: no_normal_flow_bc_ids = [] self.set_no_normal_flow_bcs(state, no_normal_flow_bc_ids)
def initialize(self, pc): """Set up the problem context. Take the original mixed problem and reformulate the problem as a hybridized mixed system. A KSP is created for the Lagrange multiplier system. """ from ufl.algorithms.map_integrands import map_integrand_dags from firedrake import (FunctionSpace, TrialFunction, TrialFunctions, TestFunction, Function, BrokenElement, MixedElement, FacetNormal, Constant, DirichletBC, Projector) from firedrake.assemble import (allocate_matrix, create_assembly_callable) from firedrake.formmanipulation import ArgumentReplacer, split_form # Extract the problem context prefix = pc.getOptionsPrefix() _, P = pc.getOperators() context = P.getPythonContext() test, trial = context.a.arguments() V = test.function_space() if V.mesh().cell_set._extruded: # TODO: Merge FIAT branch to support TPC trace elements raise NotImplementedError("Not implemented on extruded meshes.") # Break the function spaces and define fully discontinuous spaces broken_elements = [BrokenElement(Vi.ufl_element()) for Vi in V] elem = MixedElement(broken_elements) V_d = FunctionSpace(V.mesh(), elem) arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)} # Replace the problems arguments with arguments defined # on the new discontinuous spaces replacer = ArgumentReplacer(arg_map) new_form = map_integrand_dags(replacer, context.a) # Create the space of approximate traces. # The vector function space will have a non-empty value_shape W = next(v for v in V if bool(v.ufl_element().value_shape())) if W.ufl_element().family() in ["Raviart-Thomas", "RTCF"]: tdegree = W.ufl_element().degree() - 1 else: tdegree = W.ufl_element().degree() # NOTE: Once extruded is ready, we will need to be aware of this # and construct the appropriate trace space for the HDiv element TraceSpace = FunctionSpace(V.mesh(), "HDiv Trace", tdegree) # NOTE: For extruded, we will need to add "on_top" and "on_bottom" trace_conditions = [ DirichletBC(TraceSpace, Constant(0.0), "on_boundary") ] # Set up the functions for the original, hybridized # and schur complement systems self.broken_solution = Function(V_d) self.broken_rhs = Function(V_d) self.trace_solution = Function(TraceSpace) self.unbroken_solution = Function(V) self.unbroken_rhs = Function(V) # Create the symbolic Schur-reduction Atilde = Tensor(new_form) gammar = TestFunction(TraceSpace) n = FacetNormal(V.mesh()) # Vector trial function will have a non-empty ufl_shape sigma = next(f for f in TrialFunctions(V_d) if bool(f.ufl_shape)) # NOTE: Once extruded is ready, this will change slightly # to include both horizontal and vertical interior facets K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS) # Assemble the Schur complement operator and right-hand side self.schur_rhs = Function(TraceSpace) self._assemble_Srhs = create_assembly_callable( K * Atilde.inv * self.broken_rhs, tensor=self.schur_rhs, form_compiler_parameters=context.fc_params) schur_comp = K * Atilde.inv * K.T self.S = allocate_matrix(schur_comp, bcs=trace_conditions, form_compiler_parameters=context.fc_params) self._assemble_S = create_assembly_callable( schur_comp, tensor=self.S, bcs=trace_conditions, form_compiler_parameters=context.fc_params) self._assemble_S() self.S.force_evaluation() Smat = self.S.petscmat # Nullspace for the multiplier problem nullsp = P.getNullSpace() if nullsp.handle != 0: new_vecs = get_trace_nullspace_vecs(K * Atilde.inv, nullsp, V, V_d, TraceSpace) tr_nullsp = PETSc.NullSpace().create(vectors=new_vecs, comm=pc.comm) Smat.setNullSpace(tr_nullsp) # Set up the KSP for the system of Lagrange multipliers ksp = PETSc.KSP().create(comm=pc.comm) ksp.setOptionsPrefix(prefix + "trace_") ksp.setTolerances(rtol=1e-13) ksp.setOperators(Smat) ksp.setUp() ksp.setFromOptions() self.ksp = ksp # Now we construct the local tensors for the reconstruction stage # TODO: Add support for mixed tensors and these variables # become unnecessary split_forms = split_form(new_form) A = Tensor(next(sf.form for sf in split_forms if sf.indices == (0, 0))) B = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 0))) C = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 1))) trial = TrialFunction( FunctionSpace(V.mesh(), BrokenElement(W.ufl_element()))) K_local = Tensor(gammar('+') * ufl.dot(trial, n) * ufl.dS) # Split functions and reconstruct each bit separately sigma_h, u_h = self.broken_solution.split() g, f = self.broken_rhs.split() # Pressure reconstruction M = B * A.inv * B.T + C u_sol = M.inv * f + M.inv * ( B * A.inv * K_local.T * self.trace_solution - B * A.inv * g) self._assemble_pressure = create_assembly_callable( u_sol, tensor=u_h, form_compiler_parameters=context.fc_params) # Velocity reconstruction sigma_sol = A.inv * g + A.inv * (B.T * u_h - K_local.T * self.trace_solution) self._assemble_velocity = create_assembly_callable( sigma_sol, tensor=sigma_h, form_compiler_parameters=context.fc_params) # Set up the projector for projecting the broken solution # into the unbroken finite element spaces # NOTE: Tolerance here matters! sigma_b, _ = self.broken_solution.split() sigma_u, _ = self.unbroken_solution.split() self.projector = Projector(sigma_b, sigma_u, solver_parameters={ "ksp_type": "cg", "ksp_rtol": 1e-13 })
def _setup_solver(self): state = self.state # just cutting down line length a bit Dt = state.timestepping.dt beta_ = Dt*state.timestepping.alpha cp = state.parameters.cp mu = state.mu Vu = state.spaces("HDiv") Vtheta = state.spaces("HDiv_v") Vrho = state.spaces("DG") # Store time-stepping coefficients as UFL Constants dt = Constant(Dt) beta = Constant(beta_) beta_cp = Constant(beta_ * cp) # Split up the rhs vector (symbolically) u_in, rho_in, theta_in = split(state.xrhs) # Build the reduced function space for u,rho M = MixedFunctionSpace((Vu, Vrho)) w, phi = TestFunctions(M) u, rho = TrialFunctions(M) n = FacetNormal(state.mesh) # Get background fields thetabar = state.fields("thetabar") rhobar = state.fields("rhobar") pibar = thermodynamics.pi(state.parameters, rhobar, thetabar) pibar_rho = thermodynamics.pi_rho(state.parameters, rhobar, thetabar) pibar_theta = thermodynamics.pi_theta(state.parameters, rhobar, thetabar) # Analytical (approximate) elimination of theta k = state.k # Upward pointing unit vector theta = -dot(k, u)*dot(k, grad(thetabar))*beta + theta_in # Only include theta' (rather than pi') in the vertical # component of the gradient # the pi prime term (here, bars are for mean and no bars are # for linear perturbations) pi = pibar_theta*theta + pibar_rho*rho # vertical projection def V(u): return k*inner(u, k) # specify degree for some terms as estimated degree is too large dxp = dx(degree=(self.quadrature_degree)) dS_vp = dS_v(degree=(self.quadrature_degree)) # add effect of density of water upon theta if self.moisture is not None: water_t = Function(Vtheta).assign(0.0) for water in self.moisture: water_t += self.state.fields(water) theta_w = theta / (1 + water_t) thetabar_w = thetabar / (1 + water_t) else: theta_w = theta thetabar_w = thetabar eqn = ( inner(w, (state.h_project(u) - u_in))*dx - beta_cp*div(theta_w*V(w))*pibar*dxp # following does nothing but is preserved in the comments # to remind us why (because V(w) is purely vertical). # + beta_cp*jump(theta*V(w), n)*avg(pibar)*dS_v - beta_cp*div(thetabar_w*w)*pi*dxp + beta_cp*jump(thetabar_w*w, n)*avg(pi)*dS_vp + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx + beta*jump(phi*u, n)*avg(rhobar)*(dS_v + dS_h) ) if mu is not None: eqn += dt*mu*inner(w, k)*inner(u, k)*dx aeqn = lhs(eqn) Leqn = rhs(eqn) # Place to put result of u rho solver self.urho = Function(M) # Boundary conditions (assumes extruded mesh) bcs = [DirichletBC(M.sub(0), 0.0, "bottom"), DirichletBC(M.sub(0), 0.0, "top")] # Solver for u, rho urho_problem = LinearVariationalProblem( aeqn, Leqn, self.urho, bcs=bcs) self.urho_solver = LinearVariationalSolver(urho_problem, solver_parameters=self.solver_parameters, options_prefix='ImplicitSolver') # Reconstruction of theta theta = TrialFunction(Vtheta) gamma = TestFunction(Vtheta) u, rho = self.urho.split() self.theta = Function(Vtheta) theta_eqn = gamma*(theta - theta_in + dot(k, u)*dot(k, grad(thetabar))*beta)*dx theta_problem = LinearVariationalProblem(lhs(theta_eqn), rhs(theta_eqn), self.theta) self.theta_solver = LinearVariationalSolver(theta_problem, options_prefix='thetabacksubstitution')
# Output solvers q_eqn = eta*q_*Dnk*dx + inner(perp(grad(eta)), unk)*dx - eta*f*dx q_problem = LinearVariationalProblem(lhs(q_eqn), rhs(q_eqn), qp) qsolver = LinearVariationalSolver(q_problem, solver_parameters= {"ksp_type":"preonly", "pc_type":"lu"}) vrt_eqn = eta*q_*dx + inner(perp(grad(eta)), un)*dx vort_problem = LinearVariationalProblem(lhs(vrt_eqn), rhs(vrt_eqn), vortn) vortsolver = LinearVariationalSolver(vort_problem, solver_parameters= {"ksp_type":"preonly", "pc_type":"lu"}) # Linear solver u, D = TrialFunctions(M) w, phi = TestFunctions(M) eqn = (inner(w, u - (up - unk)) +phi*(D - (Dp - Dnk)) -0.5*dt*(g*div(w)*D - f*inner(w, perp(u)) - H*phi*div(u)))*dx params = {'mat_type': 'matfree', 'ksp_type': 'preonly', 'pc_type': 'python', 'pc_python_type': 'firedrake.HybridizationPC', 'hybridization': {'ksp_type': 'preonly', 'pc_type': 'lu', 'pc_factor_mat_solver_type': 'mumps'}} uD_problem = LinearVariationalProblem(lhs(eqn), rhs(eqn), xd)
def _setup_solver(self): state = self.state # just cutting down line length a bit dt = state.dt beta_ = dt * self.alpha Vu = state.spaces("HDiv") Vb = state.spaces("theta") Vp = state.spaces("DG") # Store time-stepping coefficients as UFL Constants beta = Constant(beta_) # Split up the rhs vector (symbolically) self.xrhs = Function(self.equations.function_space) u_in, p_in, b_in = split(self.xrhs) # Build the reduced function space for u,p M = MixedFunctionSpace((Vu, Vp)) w, phi = TestFunctions(M) u, p = TrialFunctions(M) # Get background fields bbar = state.fields("bbar") # Analytical (approximate) elimination of theta k = state.k # Upward pointing unit vector b = -dot(k, u) * dot(k, grad(bbar)) * beta + b_in # vertical projection def V(u): return k * inner(u, k) eqn = (inner(w, (u - u_in)) * dx - beta * div(w) * p * dx - beta * inner(w, k) * b * dx + phi * div(u) * dx) if hasattr(self.equations, "mu"): eqn += dt * self.equations.mu * inner(w, k) * inner(u, k) * dx aeqn = lhs(eqn) Leqn = rhs(eqn) # Place to put result of u p solver self.up = Function(M) # Boundary conditions (assumes extruded mesh) # BCs are declared for the plain velocity space. As we need them in # a mixed problem, we replicate the BCs but for subspace of M bcs = [ DirichletBC(M.sub(0), bc.function_arg, bc.sub_domain) for bc in self.equations.bcs['u'] ] # Solver for u, p up_problem = LinearVariationalProblem(aeqn, Leqn, self.up, bcs=bcs) # Provide callback for the nullspace of the trace system def trace_nullsp(T): return VectorSpaceBasis(constant=True) appctx = {"trace_nullspace": trace_nullsp} self.up_solver = LinearVariationalSolver( up_problem, solver_parameters=self.solver_parameters, appctx=appctx) # Reconstruction of b b = TrialFunction(Vb) gamma = TestFunction(Vb) u, p = self.up.split() self.b = Function(Vb) b_eqn = gamma * (b - b_in + dot(k, u) * dot(k, grad(bbar)) * beta) * dx b_problem = LinearVariationalProblem(lhs(b_eqn), rhs(b_eqn), self.b) self.b_solver = LinearVariationalSolver(b_problem)
def _setup_solver(self): import numpy as np state = self.state dt = state.dt beta_ = dt * self.alpha cp = state.parameters.cp Vu = state.spaces("HDiv") Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element())) Vtheta = state.spaces("theta") Vrho = state.spaces("DG") # Store time-stepping coefficients as UFL Constants beta = Constant(beta_) beta_cp = Constant(beta_ * cp) h_deg = Vrho.ufl_element().degree()[0] v_deg = Vrho.ufl_element().degree()[1] Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg)) # Split up the rhs vector (symbolically) self.xrhs = Function(self.equations.function_space) u_in, rho_in, theta_in = split(self.xrhs)[0:3] # Build the function space for "broken" u, rho, and pressure trace M = MixedFunctionSpace((Vu_broken, Vrho, Vtrace)) w, phi, dl = TestFunctions(M) u, rho, l0 = TrialFunctions(M) n = FacetNormal(state.mesh) # Get background fields thetabar = state.fields("thetabar") rhobar = state.fields("rhobar") exnerbar = thermodynamics.exner_pressure(state.parameters, rhobar, thetabar) exnerbar_rho = thermodynamics.dexner_drho(state.parameters, rhobar, thetabar) exnerbar_theta = thermodynamics.dexner_dtheta(state.parameters, rhobar, thetabar) # Analytical (approximate) elimination of theta k = state.k # Upward pointing unit vector theta = -dot(k, u) * dot(k, grad(thetabar)) * beta + theta_in # Only include theta' (rather than exner') in the vertical # component of the gradient # The exner prime term (here, bars are for mean and no bars are # for linear perturbations) exner = exnerbar_theta * theta + exnerbar_rho * rho # Vertical projection def V(u): return k * inner(u, k) # hydrostatic projection h_project = lambda u: u - k * inner(u, k) # Specify degree for some terms as estimated degree is too large dxp = dx(degree=(self.quadrature_degree)) dS_vp = dS_v(degree=(self.quadrature_degree)) dS_hp = dS_h(degree=(self.quadrature_degree)) ds_vp = ds_v(degree=(self.quadrature_degree)) ds_tbp = (ds_t(degree=(self.quadrature_degree)) + ds_b(degree=(self.quadrature_degree))) # Add effect of density of water upon theta if self.moisture is not None: water_t = Function(Vtheta).assign(0.0) for water in self.moisture: water_t += self.state.fields(water) theta_w = theta / (1 + water_t) thetabar_w = thetabar / (1 + water_t) else: theta_w = theta thetabar_w = thetabar _l0 = TrialFunction(Vtrace) _dl = TestFunction(Vtrace) a_tr = _dl('+') * _l0('+') * ( dS_vp + dS_hp) + _dl * _l0 * ds_vp + _dl * _l0 * ds_tbp def L_tr(f): return _dl('+') * avg(f) * ( dS_vp + dS_hp) + _dl * f * ds_vp + _dl * f * ds_tbp cg_ilu_parameters = { 'ksp_type': 'cg', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu' } # Project field averages into functions on the trace space rhobar_avg = Function(Vtrace) exnerbar_avg = Function(Vtrace) rho_avg_prb = LinearVariationalProblem(a_tr, L_tr(rhobar), rhobar_avg) exner_avg_prb = LinearVariationalProblem(a_tr, L_tr(exnerbar), exnerbar_avg) rho_avg_solver = LinearVariationalSolver( rho_avg_prb, solver_parameters=cg_ilu_parameters, options_prefix='rhobar_avg_solver') exner_avg_solver = LinearVariationalSolver( exner_avg_prb, solver_parameters=cg_ilu_parameters, options_prefix='exnerbar_avg_solver') with timed_region("Gusto:HybridProjectRhobar"): rho_avg_solver.solve() with timed_region("Gusto:HybridProjectExnerbar"): exner_avg_solver.solve() # "broken" u, rho, and trace system # NOTE: no ds_v integrals since equations are defined on # a periodic (or sphere) base mesh. if any([t.has_label(hydrostatic) for t in self.equations.residual]): u_mass = inner(w, (h_project(u) - u_in)) * dx else: u_mass = inner(w, (u - u_in)) * dx eqn = ( # momentum equation u_mass - beta_cp * div(theta_w * V(w)) * exnerbar * dxp # following does nothing but is preserved in the comments # to remind us why (because V(w) is purely vertical). # + beta_cp*jump(theta_w*V(w), n=n)*exnerbar_avg('+')*dS_vp + beta_cp * jump(theta_w * V(w), n=n) * exnerbar_avg('+') * dS_hp + beta_cp * dot(theta_w * V(w), n) * exnerbar_avg * ds_tbp - beta_cp * div(thetabar_w * w) * exner * dxp # trace terms appearing after integrating momentum equation + beta_cp * jump(thetabar_w * w, n=n) * l0('+') * (dS_vp + dS_hp) + beta_cp * dot(thetabar_w * w, n) * l0 * (ds_tbp + ds_vp) # mass continuity equation + (phi * (rho - rho_in) - beta * inner(grad(phi), u) * rhobar) * dx + beta * jump(phi * u, n=n) * rhobar_avg('+') * (dS_v + dS_h) # term added because u.n=0 is enforced weakly via the traces + beta * phi * dot(u, n) * rhobar_avg * (ds_tb + ds_v) # constraint equation to enforce continuity of the velocity # through the interior facets and weakly impose the no-slip # condition + dl('+') * jump(u, n=n) * (dS_vp + dS_hp) + dl * dot(u, n) * (ds_tbp + ds_vp)) # contribution of the sponge term if hasattr(self.equations, "mu"): eqn += dt * self.equations.mu * inner(w, k) * inner(u, k) * dx aeqn = lhs(eqn) Leqn = rhs(eqn) # Function for the hybridized solutions self.urhol0 = Function(M) hybridized_prb = LinearVariationalProblem(aeqn, Leqn, self.urhol0) hybridized_solver = LinearVariationalSolver( hybridized_prb, solver_parameters=self.solver_parameters, options_prefix='ImplicitSolver') self.hybridized_solver = hybridized_solver # Project broken u into the HDiv space using facet averaging. # Weight function counting the dofs of the HDiv element: shapes = { "i": Vu.finat_element.space_dimension(), "j": np.prod(Vu.shape, dtype=int) } weight_kernel = """ for (int i=0; i<{i}; ++i) for (int j=0; j<{j}; ++j) w[i*{j} + j] += 1.0; """.format(**shapes) self._weight = Function(Vu) par_loop(weight_kernel, dx, {"w": (self._weight, INC)}) # Averaging kernel self._average_kernel = """ for (int i=0; i<{i}; ++i) for (int j=0; j<{j}; ++j) vec_out[i*{j} + j] += vec_in[i*{j} + j]/w[i*{j} + j]; """.format(**shapes) # HDiv-conforming velocity self.u_hdiv = Function(Vu) # Reconstruction of theta theta = TrialFunction(Vtheta) gamma = TestFunction(Vtheta) self.theta = Function(Vtheta) theta_eqn = gamma * (theta - theta_in + dot(k, self.u_hdiv) * dot(k, grad(thetabar)) * beta) * dx theta_problem = LinearVariationalProblem(lhs(theta_eqn), rhs(theta_eqn), self.theta) self.theta_solver = LinearVariationalSolver( theta_problem, solver_parameters=cg_ilu_parameters, options_prefix='thetabacksubstitution') # Store boundary conditions for the div-conforming velocity to apply # post-solve self.bcs = self.equations.bcs['u']
def __init__(self, equation, alpha): self.field_name = equation.field_name implicit_terms = ["incompressibility", "sponge"] dt = equation.state.dt W = equation.function_space self.x0 = Function(W) self.xF = Function(W) # set up boundary conditions on the u subspace of W bcs = [ DirichletBC(W.sub(0), bc.function_arg, bc.sub_domain) for bc in equation.bcs['u'] ] # drop terms relating to transport and diffusion residual = equation.residual.label_map( lambda t: any(t.has_label(transport, diffusion, return_tuple=True) ), drop) # the lhs of both of the explicit and implicit solvers is just # the time derivative form trials = TrialFunctions(W) a = residual.label_map(lambda t: t.has_label(time_derivative), replace_subject(trials), map_if_false=drop) # the explicit forms are multiplied by (1-alpha) and moved to the rhs L_explicit = -(1 - alpha) * dt * residual.label_map( lambda t: t.has_label(time_derivative) or t.get(name) in implicit_terms or t.get(name) == "hydrostatic_form", drop, replace_subject(self.x0)) # the implicit forms are multiplied by alpha and moved to the rhs L_implicit = -alpha * dt * residual.label_map( lambda t: t.has_label(time_derivative) or t.get(name) in implicit_terms or t.get(name) == "hydrostatic_form", drop, replace_subject(self.x0)) # now add the terms that are always fully implicit if any(t.get(name) in implicit_terms for t in residual): L_implicit -= dt * residual.label_map( lambda t: t.get(name) in implicit_terms, replace_subject(self.x0), drop) # the hydrostatic equations require some additional forms: if any([t.has_label(hydrostatic) for t in residual]): L_explicit += residual.label_map( lambda t: t.get(name) == "hydrostatic_form", replace_subject(self.x0), drop) L_implicit -= residual.label_map( lambda t: t.get(name) == "hydrostatic_form", replace_subject(self.x0), drop) # now we can set up the explicit and implicit problems explicit_forcing_problem = LinearVariationalProblem(a.form, L_explicit.form, self.xF, bcs=bcs) implicit_forcing_problem = LinearVariationalProblem(a.form, L_implicit.form, self.xF, bcs=bcs) solver_parameters = {} if logger.isEnabledFor(DEBUG): solver_parameters["ksp_monitor_true_residual"] = None self.solvers = {} self.solvers["explicit"] = LinearVariationalSolver( explicit_forcing_problem, solver_parameters=solver_parameters, options_prefix="ExplicitForcingSolver") self.solvers["implicit"] = LinearVariationalSolver( implicit_forcing_problem, solver_parameters=solver_parameters, options_prefix="ImplicitForcingSolver")
def _setup_solver(self): state = self.state # just cutting down line length a bit Dt = state.timestepping.dt beta_ = Dt*state.timestepping.alpha mu = state.mu Vu = state.spaces("HDiv") Vb = state.spaces("HDiv_v") Vp = state.spaces("DG") # Store time-stepping coefficients as UFL Constants dt = Constant(Dt) beta = Constant(beta_) # Split up the rhs vector (symbolically) u_in, p_in, b_in = split(state.xrhs) # Build the reduced function space for u,p M = MixedFunctionSpace((Vu, Vp)) w, phi = TestFunctions(M) u, p = TrialFunctions(M) # Get background fields bbar = state.fields("bbar") # Analytical (approximate) elimination of theta k = state.k # Upward pointing unit vector b = -dot(k, u)*dot(k, grad(bbar))*beta + b_in # vertical projection def V(u): return k*inner(u, k) eqn = ( inner(w, (u - u_in))*dx - beta*div(w)*p*dx - beta*inner(w, k)*b*dx + phi*div(u)*dx ) if mu is not None: eqn += dt*mu*inner(w, k)*inner(u, k)*dx aeqn = lhs(eqn) Leqn = rhs(eqn) # Place to put result of u p solver self.up = Function(M) # Boundary conditions (assumes extruded mesh) bcs = None if len(self.state.bcs) == 0 else self.state.bcs # Solver for u, p up_problem = LinearVariationalProblem(aeqn, Leqn, self.up, bcs=bcs) # Provide callback for the nullspace of the trace system def trace_nullsp(T): return VectorSpaceBasis(constant=True) appctx = {"trace_nullspace": trace_nullsp} self.up_solver = LinearVariationalSolver(up_problem, solver_parameters=self.solver_parameters, appctx=appctx) # Reconstruction of b b = TrialFunction(Vb) gamma = TestFunction(Vb) u, p = self.up.split() self.b = Function(Vb) b_eqn = gamma*(b - b_in + dot(k, u)*dot(k, grad(bbar))*beta)*dx b_problem = LinearVariationalProblem(lhs(b_eqn), rhs(b_eqn), self.b) self.b_solver = LinearVariationalSolver(b_problem)
def initialize(self, pc): """ Set up the problem context. Takes the original mixed problem and transforms it into the equivalent hybrid-mixed system. A KSP object is created for the Lagrange multipliers on the top/bottom faces of the mesh cells. """ from firedrake import (FunctionSpace, Function, Constant, FiniteElement, TensorProductElement, TrialFunction, TrialFunctions, TestFunction, DirichletBC, interval, MixedElement, BrokenElement) from firedrake.assemble import (allocate_matrix, create_assembly_callable) from firedrake.formmanipulation import split_form from ufl.algorithms.replace import replace from ufl.cell import TensorProductCell # Extract PC context prefix = pc.getOptionsPrefix() + "vert_hybridization_" _, P = pc.getOperators() self.ctx = P.getPythonContext() if not isinstance(self.ctx, ImplicitMatrixContext): raise ValueError( "The python context must be an ImplicitMatrixContext") test, trial = self.ctx.a.arguments() V = test.function_space() mesh = V.mesh() # Magically determine which spaces are vector and scalar valued for i, Vi in enumerate(V): # Vector-valued spaces will have a non-empty value_shape if Vi.ufl_element().value_shape(): self.vidx = i else: self.pidx = i Vv = V[self.vidx] Vp = V[self.pidx] # Create the space of approximate traces in the vertical. # NOTE: Technically a hack since the resulting space is technically # defined in cell interiors, however the degrees of freedom will only # be geometrically defined on edges. Arguments will only be used in # surface integrals deg, _ = Vv.ufl_element().degree() # Assumes a tensor product cell (quads, triangular-prisms, cubes) if not isinstance(Vp.ufl_element().cell(), TensorProductCell): raise NotImplementedError( "Currently only implemented for tensor product discretizations" ) # Only want the horizontal cell cell, _ = Vp.ufl_element().cell()._cells DG = FiniteElement("DG", cell, deg) CG = FiniteElement("CG", interval, 1) Vv_tr_element = TensorProductElement(DG, CG) Vv_tr = FunctionSpace(mesh, Vv_tr_element) # Break the spaces broken_elements = MixedElement( [BrokenElement(Vi.ufl_element()) for Vi in V]) V_d = FunctionSpace(mesh, broken_elements) # Set up relevant functions self.broken_solution = Function(V_d) self.broken_residual = Function(V_d) self.trace_solution = Function(Vv_tr) self.unbroken_solution = Function(V) self.unbroken_residual = Function(V) # Set up transfer kernels to and from the broken velocity space # NOTE: Since this snippet of code is used in a couple places in # in Gusto, might be worth creating a utility function that is # is importable and just called where needed. shapes = { "i": Vv.finat_element.space_dimension(), "j": np.prod(Vv.shape, dtype=int) } weight_kernel = """ for (int i=0; i<{i}; ++i) for (int j=0; j<{j}; ++j) w[i*{j} + j] += 1.0; """.format(**shapes) self.weight = Function(Vv) par_loop(weight_kernel, dx, {"w": (self.weight, INC)}) # Averaging kernel self.average_kernel = """ for (int i=0; i<{i}; ++i) for (int j=0; j<{j}; ++j) vec_out[i*{j} + j] += vec_in[i*{j} + j]/w[i*{j} + j]; """.format(**shapes) # Original mixed operator replaced with "broken" arguments arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)} Atilde = Tensor(replace(self.ctx.a, arg_map)) gammar = TestFunction(Vv_tr) n = FacetNormal(mesh) sigma = TrialFunctions(V_d)[self.vidx] # Again, assumes tensor product structure. Why use this if you # don't have some form of vertical extrusion? Kform = gammar('+') * jump(sigma, n=n) * dS_h # Here we deal with boundary conditions if self.ctx.row_bcs: # Find all the subdomains with neumann BCS # These are Dirichlet BCs on the vidx space neumann_subdomains = set() for bc in self.ctx.row_bcs: if bc.function_space().index == self.pidx: raise NotImplementedError( "Dirichlet conditions for scalar variable not supported. Use a weak bc." ) if bc.function_space().index != self.vidx: raise NotImplementedError( "Dirichlet bc set on unsupported space.") # append the set of sub domains subdom = bc.sub_domain if isinstance(subdom, str): neumann_subdomains |= set([subdom]) else: neumann_subdomains |= set(as_tuple(subdom, int)) # separate out the top and bottom bcs extruded_neumann_subdomains = neumann_subdomains & { "top", "bottom" } neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains integrand = gammar * dot(sigma, n) measures = [] trace_subdomains = [] for subdomain in sorted(extruded_neumann_subdomains): measures.append({"top": ds_t, "bottom": ds_b}[subdomain]) trace_subdomains.extend( sorted({"top", "bottom"} - extruded_neumann_subdomains)) measures.extend((ds(sd) for sd in sorted(neumann_subdomains))) markers = [int(x) for x in mesh.exterior_facets.unique_markers] dirichlet_subdomains = set(markers) - neumann_subdomains trace_subdomains.extend(sorted(dirichlet_subdomains)) for measure in measures: Kform += integrand * measure else: trace_subdomains = ["top", "bottom"] trace_bcs = [ DirichletBC(Vv_tr, Constant(0.0), subdomain) for subdomain in trace_subdomains ] # Make a SLATE tensor from Kform K = Tensor(Kform) # Assemble the Schur complement operator and right-hand side self.schur_rhs = Function(Vv_tr) self._assemble_Srhs = create_assembly_callable( K * Atilde.inv * AssembledVector(self.broken_residual), tensor=self.schur_rhs, form_compiler_parameters=self.ctx.fc_params) mat_type = PETSc.Options().getString(prefix + "mat_type", "aij") schur_comp = K * Atilde.inv * K.T self.S = allocate_matrix(schur_comp, bcs=trace_bcs, form_compiler_parameters=self.ctx.fc_params, mat_type=mat_type, options_prefix=prefix) self._assemble_S = create_assembly_callable( schur_comp, tensor=self.S, bcs=trace_bcs, form_compiler_parameters=self.ctx.fc_params, mat_type=mat_type) self._assemble_S() self.S.force_evaluation() Smat = self.S.petscmat nullspace = self.ctx.appctx.get("vert_trace_nullspace", None) if nullspace is not None: nsp = nullspace(Vv_tr) Smat.setNullSpace(nsp.nullspace(comm=pc.comm)) # Set up the KSP for the system of Lagrange multipliers trace_ksp = PETSc.KSP().create(comm=pc.comm) trace_ksp.setOptionsPrefix(prefix) trace_ksp.setOperators(Smat) trace_ksp.setUp() trace_ksp.setFromOptions() self.trace_ksp = trace_ksp split_mixed_op = dict(split_form(Atilde.form)) split_trace_op = dict(split_form(K.form)) # Generate reconstruction calls self._reconstruction_calls(split_mixed_op, split_trace_op)
def compressible_hydrostatic_balance(state, theta0, rho0, pi0=None, top=False, pi_boundary=Constant(1.0), water_t=None, solve_for_rho=False, params=None): """ Compute a hydrostatically balanced density given a potential temperature profile. :arg state: The :class:`State` object. :arg theta0: :class:`.Function`containing the potential temperature. :arg rho0: :class:`.Function` to write the initial density into. :arg top: If True, set a boundary condition at the top. Otherwise, set it at the bottom. :arg pi_boundary: a field or expression to use as boundary data for pi on the top or bottom as specified. :arg water_t: the initial total water mixing ratio field. """ # Calculate hydrostatic Pi VDG = state.spaces("DG") Vv = state.spaces("Vv") W = MixedFunctionSpace((Vv, VDG)) v, pi = TrialFunctions(W) dv, dpi = TestFunctions(W) n = FacetNormal(state.mesh) cp = state.parameters.cp # add effect of density of water upon theta theta = theta0 if water_t is not None: theta = theta0 / (1 + water_t) alhs = ( (cp*inner(v, dv) - cp*div(dv*theta)*pi)*dx + dpi*div(theta*v)*dx ) if top: bmeasure = ds_t bstring = "bottom" else: bmeasure = ds_b bstring = "top" arhs = -cp*inner(dv, n)*theta*pi_boundary*bmeasure g = state.parameters.g arhs -= g*inner(dv, state.k)*dx bcs = [DirichletBC(W.sub(0), 0.0, bstring)] w = Function(W) PiProblem = LinearVariationalProblem(alhs, arhs, w, bcs=bcs) if params is None: params = {'pc_type': 'fieldsplit', 'pc_fieldsplit_type': 'schur', 'ksp_type': 'gmres', 'ksp_monitor_true_residual': True, 'ksp_max_it': 100, 'ksp_gmres_restart': 50, 'pc_fieldsplit_schur_fact_type': 'FULL', 'pc_fieldsplit_schur_precondition': 'selfp', 'fieldsplit_0_ksp_type': 'richardson', 'fieldsplit_0_ksp_max_it': 5, 'fieldsplit_0_pc_type': 'gamg', 'fieldsplit_1_pc_gamg_sym_graph': True, 'fieldsplit_1_mg_levels_ksp_type': 'chebyshev', 'fieldsplit_1_mg_levels_ksp_chebyshev_esteig': True, 'fieldsplit_1_mg_levels_ksp_max_it': 5, 'fieldsplit_1_mg_levels_pc_type': 'bjacobi', 'fieldsplit_1_mg_levels_sub_pc_type': 'ilu'} PiSolver = LinearVariationalSolver(PiProblem, solver_parameters=params) PiSolver.solve() v, Pi = w.split() if pi0 is not None: pi0.assign(Pi) if solve_for_rho: w1 = Function(W) v, rho = w1.split() rho.interpolate(thermodynamics.rho(state.parameters, theta0, Pi)) v, rho = split(w1) dv, dpi = TestFunctions(W) pi = thermodynamics.pi(state.parameters, rho, theta0) F = ( (cp*inner(v, dv) - cp*div(dv*theta)*pi)*dx + dpi*div(theta0*v)*dx + cp*inner(dv, n)*theta*pi_boundary*bmeasure ) F += g*inner(dv, state.k)*dx rhoproblem = NonlinearVariationalProblem(F, w1, bcs=bcs) rhosolver = NonlinearVariationalSolver(rhoproblem, solver_parameters=params) rhosolver.solve() v, rho_ = w1.split() rho0.assign(rho_) else: rho0.interpolate(thermodynamics.rho(state.parameters, theta0, Pi))
def initialize(self, pc): """Set up the problem context. Take the original mixed problem and reformulate the problem as a hybridized mixed system. A KSP is created for the Lagrange multiplier system. """ from firedrake import (FunctionSpace, Function, Constant, TrialFunction, TrialFunctions, TestFunction, DirichletBC, assemble) from firedrake.assemble import (allocate_matrix, create_assembly_callable) from firedrake.formmanipulation import split_form from ufl.algorithms.replace import replace # Extract the problem context prefix = pc.getOptionsPrefix() + "hybridization_" _, P = pc.getOperators() self.cxt = P.getPythonContext() if not isinstance(self.cxt, ImplicitMatrixContext): raise ValueError("The python context must be an ImplicitMatrixContext") test, trial = self.cxt.a.arguments() V = test.function_space() mesh = V.mesh() if len(V) != 2: raise ValueError("Expecting two function spaces.") if all(Vi.ufl_element().value_shape() for Vi in V): raise ValueError("Expecting an H(div) x L2 pair of spaces.") # Automagically determine which spaces are vector and scalar for i, Vi in enumerate(V): if Vi.ufl_element().sobolev_space().name == "HDiv": self.vidx = i else: assert Vi.ufl_element().sobolev_space().name == "L2" self.pidx = i # Create the space of approximate traces. W = V[self.vidx] if W.ufl_element().family() == "Brezzi-Douglas-Marini": tdegree = W.ufl_element().degree() else: try: # If we have a tensor product element h_deg, v_deg = W.ufl_element().degree() tdegree = (h_deg - 1, v_deg - 1) except TypeError: tdegree = W.ufl_element().degree() - 1 TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree) # Break the function spaces and define fully discontinuous spaces broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V]) V_d = FunctionSpace(mesh, broken_elements) # Set up the functions for the original, hybridized # and schur complement systems self.broken_solution = Function(V_d) self.broken_residual = Function(V_d) self.trace_solution = Function(TraceSpace) self.unbroken_solution = Function(V) self.unbroken_residual = Function(V) # Set up the KSP for the hdiv residual projection hdiv_mass_ksp = PETSc.KSP().create(comm=pc.comm) hdiv_mass_ksp.setOptionsPrefix(prefix + "hdiv_residual_") # HDiv mass operator p = TrialFunction(V[self.vidx]) q = TestFunction(V[self.vidx]) mass = ufl.dot(p, q)*ufl.dx # TODO: Bcs? M = assemble(mass, bcs=None, form_compiler_parameters=self.cxt.fc_params) M.force_evaluation() Mmat = M.petscmat hdiv_mass_ksp.setOperators(Mmat) hdiv_mass_ksp.setUp() hdiv_mass_ksp.setFromOptions() self.hdiv_mass_ksp = hdiv_mass_ksp # Storing the result of A.inv * r, where A is the HDiv # mass matrix and r is the HDiv residual self._primal_r = Function(V[self.vidx]) tau = TestFunction(V_d[self.vidx]) self._assemble_broken_r = create_assembly_callable( ufl.dot(self._primal_r, tau)*ufl.dx, tensor=self.broken_residual.split()[self.vidx], form_compiler_parameters=self.cxt.fc_params) # Create the symbolic Schur-reduction: # Original mixed operator replaced with "broken" # arguments arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)} Atilde = Tensor(replace(self.cxt.a, arg_map)) gammar = TestFunction(TraceSpace) n = ufl.FacetNormal(mesh) sigma = TrialFunctions(V_d)[self.vidx] if mesh.cell_set._extruded: Kform = (gammar('+') * ufl.dot(sigma, n) * ufl.dS_h + gammar('+') * ufl.dot(sigma, n) * ufl.dS_v) else: Kform = (gammar('+') * ufl.dot(sigma, n) * ufl.dS) # Here we deal with boundaries. If there are Neumann # conditions (which should be enforced strongly for # H(div)xL^2) then we need to add jump terms on the exterior # facets. If there are Dirichlet conditions (which should be # enforced weakly) then we need to zero out the trace # variables there as they are not active (otherwise the hybrid # problem is not well-posed). # If boundary conditions are contained in the ImplicitMatrixContext: if self.cxt.row_bcs: # Find all the subdomains with neumann BCS # These are Dirichlet BCs on the vidx space neumann_subdomains = set() for bc in self.cxt.row_bcs: if bc.function_space().index == self.pidx: raise NotImplementedError("Dirichlet conditions for scalar variable not supported. Use a weak bc") if bc.function_space().index != self.vidx: raise NotImplementedError("Dirichlet bc set on unsupported space.") # append the set of sub domains subdom = bc.sub_domain if isinstance(subdom, str): neumann_subdomains |= set([subdom]) else: neumann_subdomains |= set(as_tuple(subdom, int)) # separate out the top and bottom bcs extruded_neumann_subdomains = neumann_subdomains & {"top", "bottom"} neumann_subdomains = neumann_subdomains.difference(extruded_neumann_subdomains) integrand = gammar * ufl.dot(sigma, n) measures = [] trace_subdomains = [] if mesh.cell_set._extruded: ds = ufl.ds_v for subdomain in extruded_neumann_subdomains: measures.append({"top": ufl.ds_t, "bottom": ufl.ds_b}[subdomain]) trace_subdomains.extend(sorted({"top", "bottom"} - extruded_neumann_subdomains)) else: ds = ufl.ds if "on_boundary" in neumann_subdomains: measures.append(ds) else: measures.append(ds(tuple(neumann_subdomains))) dirichlet_subdomains = set(mesh.exterior_facets.unique_markers) - neumann_subdomains trace_subdomains.append(sorted(dirichlet_subdomains)) for measure in measures: Kform += integrand*measure trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains] else: # No bcs were provided, we assume weak Dirichlet conditions. # We zero out the contribution of the trace variables on # the exterior boundary. Extruded cells will have both # horizontal and vertical facets trace_subdomains = ["on_boundary"] if mesh.cell_set._extruded: trace_subdomains.extend(["bottom", "top"]) trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains] # Make a SLATE tensor from Kform K = Tensor(Kform) # Assemble the Schur complement operator and right-hand side self.schur_rhs = Function(TraceSpace) self._assemble_Srhs = create_assembly_callable( K * Atilde.inv * AssembledVector(self.broken_residual), tensor=self.schur_rhs, form_compiler_parameters=self.cxt.fc_params) schur_comp = K * Atilde.inv * K.T self.S = allocate_matrix(schur_comp, bcs=trace_bcs, form_compiler_parameters=self.cxt.fc_params) self._assemble_S = create_assembly_callable(schur_comp, tensor=self.S, bcs=trace_bcs, form_compiler_parameters=self.cxt.fc_params) self._assemble_S() self.S.force_evaluation() Smat = self.S.petscmat # Nullspace for the multiplier problem nullspace = create_schur_nullspace(P, -K * Atilde, V, V_d, TraceSpace, pc.comm) if nullspace: Smat.setNullSpace(nullspace) # Set up the KSP for the system of Lagrange multipliers trace_ksp = PETSc.KSP().create(comm=pc.comm) trace_ksp.setOptionsPrefix(prefix) trace_ksp.setOperators(Smat) trace_ksp.setUp() trace_ksp.setFromOptions() self.trace_ksp = trace_ksp split_mixed_op = dict(split_form(Atilde.form)) split_trace_op = dict(split_form(K.form)) # Generate reconstruction calls self._reconstruction_calls(split_mixed_op, split_trace_op) # NOTE: The projection stage *might* be replaced by a Fortin # operator. We may want to allow the user to specify if they # wish to use a Fortin operator over a projection, or vice-versa. # In a future add-on, we can add a switch which chooses either # the Fortin reconstruction or the usual KSP projection. # Set up the projection KSP hdiv_projection_ksp = PETSc.KSP().create(comm=pc.comm) hdiv_projection_ksp.setOptionsPrefix(prefix + 'hdiv_projection_') # Reuse the mass operator from the hdiv_mass_ksp hdiv_projection_ksp.setOperators(Mmat) # Construct the RHS for the projection stage self._projection_rhs = Function(V[self.vidx]) self._assemble_projection_rhs = create_assembly_callable( ufl.dot(self.broken_solution.split()[self.vidx], q)*ufl.dx, tensor=self._projection_rhs, form_compiler_parameters=self.cxt.fc_params) # Finalize ksp setup hdiv_projection_ksp.setUp() hdiv_projection_ksp.setFromOptions() self.hdiv_projection_ksp = hdiv_projection_ksp
q_ = TrialFunction(W2) q_eqn = eta * q_ * Dn * dx + inner(perp(grad(eta)), un) * dx - eta * f * dx q_p = LinearVariationalProblem(lhs(q_eqn), rhs(q_eqn), qn) q_solver = LinearVariationalSolver(q_p, solver_parameters={ "ksp_type": "preonly", "pc_type": "lu" }) q_solver.solve() q0.assign(qn) # Build advection, forcing forms M_ext = MixedFunctionSpace((W1, W0, W0)) xp_ext = Function(M_ext) u_, D_, P_ = TrialFunctions(M_ext) v, psi, chi = TestFunctions(M_ext) D_bar = 0.5 * (Dn + D_) u_bar = 0.5 * (un + u_) Frhs = unk * Dnk / 3. + un * Dnk / 6. + unk * Dn / 6. + un * Dn / 3. K = inner(un, un) / 3. + inner(un, unk) / 3. + inner(unk, unk) / 3. Prhs = g * (D_bar + b) + 0.5 * K D_ad = (inner(grad(psi), D_bar * u_rec) * dx - jump(psi * u_rec, n) * uw(ubar, D_bar) * dS) u_ad = (inner(perp(grad(inner(Dbar * v, perp(u_rec)))), u_bar) * dx + inner(jump(inner(Dbar * v, perp(u_rec)), n), p_uw(ubar, u_bar)) * dS) u_f = (jump(P_ * v, n) * uw(ubar, Dbar) * dS - inner(Dbar * v, grad(P_)) * dx - f * inner(perp(u_rec), Dbar * v) * dx)
def test_replace_subject(subject_type, replacement_type): # ------------------------------------------------------------------------ # # Only certain combinations of options are valid # ------------------------------------------------------------------------ # if subject_type == 'vector' and replacement_type != 'vector': return True elif replacement_type == 'vector' and subject_type != 'vector': return True # ------------------------------------------------------------------------ # # Set up # ------------------------------------------------------------------------ # # Some basic labels foo_label = Label("foo") bar_label = Label("bar") # Create mesh, function space and forms n = 3 mesh = UnitSquareMesh(n, n) V0 = FunctionSpace(mesh, "DG", 0) V1 = FunctionSpace(mesh, "CG", 1) V2 = VectorFunctionSpace(mesh, "DG", 0) Vmixed = MixedFunctionSpace((V0, V1)) idx = None # ------------------------------------------------------------------------ # # Choose subject # ------------------------------------------------------------------------ # if subject_type == 'normal': V = V0 elif subject_type == 'mixed': V = Vmixed if replacement_type == 'normal': idx = 0 elif subject_type == 'vector': V = V2 else: raise ValueError the_subject = Function(V) not_subject = Function(V) test = TestFunction(V) form_1 = inner(the_subject, test)*dx form_2 = inner(not_subject, test)*dx term_1 = foo_label(subject(form_1, the_subject)) term_2 = bar_label(form_2) labelled_form = term_1 + term_2 # ------------------------------------------------------------------------ # # Choose replacement # ------------------------------------------------------------------------ # if replacement_type == 'normal': V = V1 elif replacement_type == 'mixed': V = Vmixed if subject_type != 'mixed': idx = 0 elif replacement_type == 'vector': V = V2 elif replacement_type == 'tuple': V = Vmixed else: raise ValueError the_replacement = Function(V) if replacement_type == 'tuple': the_replacement = TrialFunctions(Vmixed) if subject_type == 'normal': idx = 0 # ------------------------------------------------------------------------ # # Test replace_subject # ------------------------------------------------------------------------ # labelled_form = labelled_form.label_map( lambda t: t.has_label(subject), map_if_true=replace_subject(the_replacement, idx=idx) )
q_eqn = eta * q_ * Dn * dx + inner(perp(grad(eta)), un) * dx - eta * f * dx q_p = LinearVariationalProblem(lhs(q_eqn), rhs(q_eqn), qn) q_solver = LinearVariationalSolver(q_p, solver_parameters={ "ksp_type": "preonly", "pc_type": "lu" }) q_solver.solve() # Build advection, forcing forms K = inner(un, un) / 3. + inner(un, unk) / 3. + inner(unk, unk) / 3. Prhs = g * (0.5 * (Dn + Dp) + b) + 0.5 * K # D advection solver v, psi = TestFunctions(M) F_, D_ = TrialFunctions(M) D_bar = 0.5 * (Dn + D_) Frhs = unk * D_ / 3. + un * D_ / 6. + unk * Dn / 6. + un * Dn / 3. D_ad = -psi * div(F_) * dx D_eqn = (D_ - Dn) * psi * dx - dt * D_ad + inner(v, F_ - Frhs) * dx Dad_p = LinearVariationalProblem(lhs(D_eqn), rhs(D_eqn), xp) D_ad_solver = LinearVariationalSolver(Dad_p, solver_parameters={ "mat_type": "aij", "snes_linesearch_type": "basic", "ksp_type": "preonly", "pc_type": "lu" }) # u advection solver w = TestFunction(W1)
def initialize(self, pc): """Set up the problem context. Take the original mixed problem and reformulate the problem as a hybridized mixed system. A KSP is created for the Lagrange multiplier system. """ from firedrake import (FunctionSpace, Function, Constant, TrialFunction, TrialFunctions, TestFunction, DirichletBC) from firedrake.assemble import (allocate_matrix, create_assembly_callable) from firedrake.formmanipulation import split_form from ufl.algorithms.replace import replace # Extract the problem context prefix = pc.getOptionsPrefix() + "hybridization_" _, P = pc.getOperators() self.ctx = P.getPythonContext() if not isinstance(self.ctx, ImplicitMatrixContext): raise ValueError( "The python context must be an ImplicitMatrixContext") test, trial = self.ctx.a.arguments() V = test.function_space() mesh = V.mesh() if len(V) != 2: raise ValueError("Expecting two function spaces.") if all(Vi.ufl_element().value_shape() for Vi in V): raise ValueError("Expecting an H(div) x L2 pair of spaces.") # Automagically determine which spaces are vector and scalar for i, Vi in enumerate(V): if Vi.ufl_element().sobolev_space().name == "HDiv": self.vidx = i else: assert Vi.ufl_element().sobolev_space().name == "L2" self.pidx = i # Create the space of approximate traces. W = V[self.vidx] if W.ufl_element().family() == "Brezzi-Douglas-Marini": tdegree = W.ufl_element().degree() else: try: # If we have a tensor product element h_deg, v_deg = W.ufl_element().degree() tdegree = (h_deg - 1, v_deg - 1) except TypeError: tdegree = W.ufl_element().degree() - 1 TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree) # Break the function spaces and define fully discontinuous spaces broken_elements = ufl.MixedElement( [ufl.BrokenElement(Vi.ufl_element()) for Vi in V]) V_d = FunctionSpace(mesh, broken_elements) # Set up the functions for the original, hybridized # and schur complement systems self.broken_solution = Function(V_d) self.broken_residual = Function(V_d) self.trace_solution = Function(TraceSpace) self.unbroken_solution = Function(V) self.unbroken_residual = Function(V) shapes = (V[self.vidx].finat_element.space_dimension(), np.prod(V[self.vidx].shape)) domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes instructions = """ for i, j w[i,j] = w[i,j] + 1 end """ self.weight = Function(V[self.vidx]) par_loop((domain, instructions), ufl.dx, {"w": (self.weight, INC)}, is_loopy_kernel=True) instructions = """ for i, j vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j] end """ self.average_kernel = (domain, instructions) # Create the symbolic Schur-reduction: # Original mixed operator replaced with "broken" # arguments arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)} Atilde = Tensor(replace(self.ctx.a, arg_map)) gammar = TestFunction(TraceSpace) n = ufl.FacetNormal(mesh) sigma = TrialFunctions(V_d)[self.vidx] if mesh.cell_set._extruded: Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h + gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v) else: Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS) # Here we deal with boundaries. If there are Neumann # conditions (which should be enforced strongly for # H(div)xL^2) then we need to add jump terms on the exterior # facets. If there are Dirichlet conditions (which should be # enforced weakly) then we need to zero out the trace # variables there as they are not active (otherwise the hybrid # problem is not well-posed). # If boundary conditions are contained in the ImplicitMatrixContext: if self.ctx.row_bcs: # Find all the subdomains with neumann BCS # These are Dirichlet BCs on the vidx space neumann_subdomains = set() for bc in self.ctx.row_bcs: if bc.function_space().index == self.pidx: raise NotImplementedError( "Dirichlet conditions for scalar variable not supported. Use a weak bc" ) if bc.function_space().index != self.vidx: raise NotImplementedError( "Dirichlet bc set on unsupported space.") # append the set of sub domains subdom = bc.sub_domain if isinstance(subdom, str): neumann_subdomains |= set([subdom]) else: neumann_subdomains |= set( as_tuple(subdom, numbers.Integral)) # separate out the top and bottom bcs extruded_neumann_subdomains = neumann_subdomains & { "top", "bottom" } neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains integrand = gammar * ufl.dot(sigma, n) measures = [] trace_subdomains = [] if mesh.cell_set._extruded: ds = ufl.ds_v for subdomain in sorted(extruded_neumann_subdomains): measures.append({ "top": ufl.ds_t, "bottom": ufl.ds_b }[subdomain]) trace_subdomains.extend( sorted({"top", "bottom"} - extruded_neumann_subdomains)) else: ds = ufl.ds if "on_boundary" in neumann_subdomains: measures.append(ds) else: measures.extend((ds(sd) for sd in sorted(neumann_subdomains))) markers = [int(x) for x in mesh.exterior_facets.unique_markers] dirichlet_subdomains = set(markers) - neumann_subdomains trace_subdomains.extend(sorted(dirichlet_subdomains)) for measure in measures: Kform += integrand * measure trace_bcs = [ DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains ] else: # No bcs were provided, we assume weak Dirichlet conditions. # We zero out the contribution of the trace variables on # the exterior boundary. Extruded cells will have both # horizontal and vertical facets trace_subdomains = ["on_boundary"] if mesh.cell_set._extruded: trace_subdomains.extend(["bottom", "top"]) trace_bcs = [ DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains ] # Make a SLATE tensor from Kform K = Tensor(Kform) # Assemble the Schur complement operator and right-hand side self.schur_rhs = Function(TraceSpace) self._assemble_Srhs = create_assembly_callable( K * Atilde.inv * AssembledVector(self.broken_residual), tensor=self.schur_rhs, form_compiler_parameters=self.ctx.fc_params) mat_type = PETSc.Options().getString(prefix + "mat_type", "aij") schur_comp = K * Atilde.inv * K.T self.S = allocate_matrix(schur_comp, bcs=trace_bcs, form_compiler_parameters=self.ctx.fc_params, mat_type=mat_type, options_prefix=prefix) self._assemble_S = create_assembly_callable( schur_comp, tensor=self.S, bcs=trace_bcs, form_compiler_parameters=self.ctx.fc_params, mat_type=mat_type) with timed_region("HybridOperatorAssembly"): self._assemble_S() Smat = self.S.petscmat nullspace = self.ctx.appctx.get("trace_nullspace", None) if nullspace is not None: nsp = nullspace(TraceSpace) Smat.setNullSpace(nsp.nullspace(comm=pc.comm)) # Set up the KSP for the system of Lagrange multipliers trace_ksp = PETSc.KSP().create(comm=pc.comm) trace_ksp.setOptionsPrefix(prefix) trace_ksp.setOperators(Smat) trace_ksp.setUp() trace_ksp.setFromOptions() self.trace_ksp = trace_ksp split_mixed_op = dict(split_form(Atilde.form)) split_trace_op = dict(split_form(K.form)) # Generate reconstruction calls self._reconstruction_calls(split_mixed_op, split_trace_op)
def compressible_hydrostatic_balance(state, theta0, rho0, exner0=None, top=False, exner_boundary=Constant(1.0), mr_t=None, solve_for_rho=False, params=None): """ Compute a hydrostatically balanced density given a potential temperature profile. By default, this uses a vertically-oriented hybridization procedure for solving the resulting discrete systems. :arg state: The :class:`State` object. :arg theta0: :class:`.Function`containing the potential temperature. :arg rho0: :class:`.Function` to write the initial density into. :arg top: If True, set a boundary condition at the top. Otherwise, set it at the bottom. :arg exner_boundary: a field or expression to use as boundary data for exner on the top or bottom as specified. :arg mr_t: the initial total water mixing ratio field. """ # Calculate hydrostatic Pi VDG = state.spaces("DG") Vu = state.spaces("HDiv") Vv = FunctionSpace(state.mesh, Vu.ufl_element()._elements[-1]) W = MixedFunctionSpace((Vv, VDG)) v, exner = TrialFunctions(W) dv, dexner = TestFunctions(W) n = FacetNormal(state.mesh) cp = state.parameters.cp # add effect of density of water upon theta theta = theta0 if mr_t is not None: theta = theta0 / (1 + mr_t) alhs = ((cp * inner(v, dv) - cp * div(dv * theta) * exner) * dx + dexner * div(theta * v) * dx) if top: bmeasure = ds_t bstring = "bottom" else: bmeasure = ds_b bstring = "top" arhs = -cp * inner(dv, n) * theta * exner_boundary * bmeasure # Possibly make g vary with spatial coordinates? g = state.parameters.g arhs -= g * inner(dv, state.k) * dx bcs = [DirichletBC(W.sub(0), zero(), bstring)] w = Function(W) exner_problem = LinearVariationalProblem(alhs, arhs, w, bcs=bcs) if params is None: params = { 'ksp_type': 'preonly', 'pc_type': 'python', 'mat_type': 'matfree', 'pc_python_type': 'gusto.VerticalHybridizationPC', # Vertical trace system is only coupled vertically in columns # block ILU is a direct solver! 'vert_hybridization': { 'ksp_type': 'preonly', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu' } } exner_solver = LinearVariationalSolver(exner_problem, solver_parameters=params, options_prefix="exner_solver") exner_solver.solve() v, exner = w.split() if exner0 is not None: exner0.assign(exner) if solve_for_rho: w1 = Function(W) v, rho = w1.split() rho.interpolate(thermodynamics.rho(state.parameters, theta0, exner)) v, rho = split(w1) dv, dexner = TestFunctions(W) exner = thermodynamics.exner_pressure(state.parameters, rho, theta0) F = ((cp * inner(v, dv) - cp * div(dv * theta) * exner) * dx + dexner * div(theta0 * v) * dx + cp * inner(dv, n) * theta * exner_boundary * bmeasure) F += g * inner(dv, state.k) * dx rhoproblem = NonlinearVariationalProblem(F, w1, bcs=bcs) rhosolver = NonlinearVariationalSolver(rhoproblem, solver_parameters=params, options_prefix="rhosolver") rhosolver.solve() v, rho_ = w1.split() rho0.assign(rho_) else: rho0.interpolate(thermodynamics.rho(state.parameters, theta0, exner))
def initialize(self, pc): """Set up the problem context. Take the original mixed problem and reformulate the problem as a hybridized mixed system. A KSP is created for the Lagrange multiplier system. """ from firedrake import (FunctionSpace, Function, Constant, TrialFunction, TrialFunctions, TestFunction, DirichletBC, assemble) from firedrake.assemble import (allocate_matrix, create_assembly_callable) from firedrake.formmanipulation import split_form from ufl.algorithms.replace import replace # Extract the problem context prefix = pc.getOptionsPrefix() + "hybridization_" _, P = pc.getOperators() self.cxt = P.getPythonContext() if not isinstance(self.cxt, ImplicitMatrixContext): raise ValueError("The python context must be an ImplicitMatrixContext") test, trial = self.cxt.a.arguments() V = test.function_space() mesh = V.mesh() if len(V) != 2: raise ValueError("Expecting two function spaces.") if all(Vi.ufl_element().value_shape() for Vi in V): raise ValueError("Expecting an H(div) x L2 pair of spaces.") # Automagically determine which spaces are vector and scalar for i, Vi in enumerate(V): if Vi.ufl_element().sobolev_space().name == "HDiv": self.vidx = i else: assert Vi.ufl_element().sobolev_space().name == "L2" self.pidx = i # Create the space of approximate traces. W = V[self.vidx] if W.ufl_element().family() == "Brezzi-Douglas-Marini": tdegree = W.ufl_element().degree() else: try: # If we have a tensor product element h_deg, v_deg = W.ufl_element().degree() tdegree = (h_deg - 1, v_deg - 1) except TypeError: tdegree = W.ufl_element().degree() - 1 TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree) # Break the function spaces and define fully discontinuous spaces broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V]) V_d = FunctionSpace(mesh, broken_elements) # Set up the functions for the original, hybridized # and schur complement systems self.broken_solution = Function(V_d) self.broken_residual = Function(V_d) self.trace_solution = Function(TraceSpace) self.unbroken_solution = Function(V) self.unbroken_residual = Function(V) # Set up the KSP for the hdiv residual projection hdiv_mass_ksp = PETSc.KSP().create(comm=pc.comm) hdiv_mass_ksp.setOptionsPrefix(prefix + "hdiv_residual_") # HDiv mass operator p = TrialFunction(V[self.vidx]) q = TestFunction(V[self.vidx]) mass = ufl.dot(p, q)*ufl.dx # TODO: Bcs? M = assemble(mass, bcs=None, form_compiler_parameters=self.cxt.fc_params) M.force_evaluation() Mmat = M.petscmat hdiv_mass_ksp.setOperators(Mmat) hdiv_mass_ksp.setUp() hdiv_mass_ksp.setFromOptions() self.hdiv_mass_ksp = hdiv_mass_ksp # Storing the result of A.inv * r, where A is the HDiv # mass matrix and r is the HDiv residual self._primal_r = Function(V[self.vidx]) tau = TestFunction(V_d[self.vidx]) self._assemble_broken_r = create_assembly_callable( ufl.dot(self._primal_r, tau)*ufl.dx, tensor=self.broken_residual.split()[self.vidx], form_compiler_parameters=self.cxt.fc_params) # Create the symbolic Schur-reduction: # Original mixed operator replaced with "broken" # arguments arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)} Atilde = Tensor(replace(self.cxt.a, arg_map)) gammar = TestFunction(TraceSpace) n = ufl.FacetNormal(mesh) sigma = TrialFunctions(V_d)[self.vidx] # We zero out the contribution of the trace variables on the exterior # boundary. Extruded cells will have both horizontal and vertical # facets if mesh.cell_set._extruded: trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary"), DirichletBC(TraceSpace, Constant(0.0), "bottom"), DirichletBC(TraceSpace, Constant(0.0), "top")] K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS_h + gammar('+') * ufl.dot(sigma, n) * ufl.dS_v) else: trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary")] K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS) # If boundary conditions are contained in the ImplicitMatrixContext: if self.cxt.row_bcs: raise NotImplementedError("Strong BCs not currently handled. Try imposing them weakly.") # Assemble the Schur complement operator and right-hand side self.schur_rhs = Function(TraceSpace) self._assemble_Srhs = create_assembly_callable( K * Atilde.inv * self.broken_residual, tensor=self.schur_rhs, form_compiler_parameters=self.cxt.fc_params) schur_comp = K * Atilde.inv * K.T self.S = allocate_matrix(schur_comp, bcs=trace_bcs, form_compiler_parameters=self.cxt.fc_params) self._assemble_S = create_assembly_callable(schur_comp, tensor=self.S, bcs=trace_bcs, form_compiler_parameters=self.cxt.fc_params) self._assemble_S() self.S.force_evaluation() Smat = self.S.petscmat # Nullspace for the multiplier problem nullspace = create_schur_nullspace(P, -K * Atilde, V, V_d, TraceSpace, pc.comm) if nullspace: Smat.setNullSpace(nullspace) # Set up the KSP for the system of Lagrange multipliers trace_ksp = PETSc.KSP().create(comm=pc.comm) trace_ksp.setOptionsPrefix(prefix) trace_ksp.setOperators(Smat) trace_ksp.setUp() trace_ksp.setFromOptions() self.trace_ksp = trace_ksp split_mixed_op = dict(split_form(Atilde.form)) split_trace_op = dict(split_form(K.form)) # Generate reconstruction calls self._reconstruction_calls(split_mixed_op, split_trace_op) # NOTE: The projection stage *might* be replaced by a Fortin # operator. We may want to allow the user to specify if they # wish to use a Fortin operator over a projection, or vice-versa. # In a future add-on, we can add a switch which chooses either # the Fortin reconstruction or the usual KSP projection. # Set up the projection KSP hdiv_projection_ksp = PETSc.KSP().create(comm=pc.comm) hdiv_projection_ksp.setOptionsPrefix(prefix + 'hdiv_projection_') # Reuse the mass operator from the hdiv_mass_ksp hdiv_projection_ksp.setOperators(Mmat) # Construct the RHS for the projection stage self._projection_rhs = Function(V[self.vidx]) self._assemble_projection_rhs = create_assembly_callable( ufl.dot(self.broken_solution.split()[self.vidx], q)*ufl.dx, tensor=self._projection_rhs, form_compiler_parameters=self.cxt.fc_params) # Finalize ksp setup hdiv_projection_ksp.setUp() hdiv_projection_ksp.setFromOptions() self.hdiv_projection_ksp = hdiv_projection_ksp
def _setup_solver(self): from firedrake.assemble import create_assembly_callable import numpy as np state = self.state dt = state.timestepping.dt beta = dt*state.timestepping.alpha cp = state.parameters.cp mu = state.mu Vu = state.spaces("HDiv") Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element())) Vtheta = state.spaces("HDiv_v") Vrho = state.spaces("DG") h_deg = state.horizontal_degree v_deg = state.vertical_degree Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg)) # Split up the rhs vector (symbolically) u_in, rho_in, theta_in = split(state.xrhs) # Build the function space for "broken" u and rho # and add the trace variable M = MixedFunctionSpace((Vu_broken, Vrho)) w, phi = TestFunctions(M) u, rho = TrialFunctions(M) l0 = TrialFunction(Vtrace) dl = TestFunction(Vtrace) n = FacetNormal(state.mesh) # Get background fields thetabar = state.fields("thetabar") rhobar = state.fields("rhobar") pibar = thermodynamics.pi(state.parameters, rhobar, thetabar) pibar_rho = thermodynamics.pi_rho(state.parameters, rhobar, thetabar) pibar_theta = thermodynamics.pi_theta(state.parameters, rhobar, thetabar) # Analytical (approximate) elimination of theta k = state.k # Upward pointing unit vector theta = -dot(k, u)*dot(k, grad(thetabar))*beta + theta_in # Only include theta' (rather than pi') in the vertical # component of the gradient # The pi prime term (here, bars are for mean and no bars are # for linear perturbations) pi = pibar_theta*theta + pibar_rho*rho # Vertical projection def V(u): return k*inner(u, k) # Specify degree for some terms as estimated degree is too large dxp = dx(degree=(self.quadrature_degree)) dS_vp = dS_v(degree=(self.quadrature_degree)) dS_hp = dS_h(degree=(self.quadrature_degree)) ds_vp = ds_v(degree=(self.quadrature_degree)) ds_tbp = ds_t(degree=(self.quadrature_degree)) + ds_b(degree=(self.quadrature_degree)) # Mass matrix for the trace space tM = assemble(dl('+')*l0('+')*(dS_v + dS_h) + dl*l0*ds_v + dl*l0*(ds_t + ds_b)) Lrhobar = Function(Vtrace) Lpibar = Function(Vtrace) rhopi_solver = LinearSolver(tM, solver_parameters={'ksp_type': 'cg', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'}, options_prefix='rhobarpibar_solver') rhobar_avg = Function(Vtrace) pibar_avg = Function(Vtrace) def _traceRHS(f): return (dl('+')*avg(f)*(dS_v + dS_h) + dl*f*ds_v + dl*f*(ds_t + ds_b)) assemble(_traceRHS(rhobar), tensor=Lrhobar) assemble(_traceRHS(pibar), tensor=Lpibar) # Project averages of coefficients into the trace space with timed_region("Gusto:HybridProjectRhobar"): rhopi_solver.solve(rhobar_avg, Lrhobar) with timed_region("Gusto:HybridProjectPibar"): rhopi_solver.solve(pibar_avg, Lpibar) # Add effect of density of water upon theta if self.moisture is not None: water_t = Function(Vtheta).assign(0.0) for water in self.moisture: water_t += self.state.fields(water) theta_w = theta / (1 + water_t) thetabar_w = thetabar / (1 + water_t) else: theta_w = theta thetabar_w = thetabar # "broken" u and rho system Aeqn = (inner(w, (state.h_project(u) - u_in))*dx - beta*cp*div(theta_w*V(w))*pibar*dxp # following does nothing but is preserved in the comments # to remind us why (because V(w) is purely vertical). # + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_vp + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_hp + beta*cp*dot(theta_w*V(w), n)*pibar_avg*ds_tbp - beta*cp*div(thetabar_w*w)*pi*dxp + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx + beta*dot(phi*u, n)*rhobar_avg('+')*(dS_v + dS_h)) if mu is not None: Aeqn += dt*mu*inner(w, k)*inner(u, k)*dx # Form the mixed operators using Slate # (A K)(X) = (X_r) # (K.T 0)(l) (0 ) # where X = ("broken" u, rho) A = Tensor(lhs(Aeqn)) X_r = Tensor(rhs(Aeqn)) # Off-diagonal block matrices containing the contributions # of the Lagrange multipliers (surface terms in the momentum equation) K = Tensor(beta*cp*dot(thetabar_w*w, n)*l0('+')*(dS_vp + dS_hp) + beta*cp*dot(thetabar_w*w, n)*l0*ds_vp + beta*cp*dot(thetabar_w*w, n)*l0*ds_tbp) # X = A.inv * (X_r - K * l), # 0 = K.T * X = -(K.T * A.inv * K) * l + K.T * A.inv * X_r, # so (K.T * A.inv * K) * l = K.T * A.inv * X_r # is the reduced equation for the Lagrange multipliers. # Right-hand side expression: (Forward substitution) Rexp = K.T * A.inv * X_r self.R = Function(Vtrace) # We need to rebuild R everytime data changes self._assemble_Rexp = create_assembly_callable(Rexp, tensor=self.R) # Schur complement operator: Smatexp = K.T * A.inv * K with timed_region("Gusto:HybridAssembleTraceOp"): S = assemble(Smatexp) S.force_evaluation() # Set up the Linear solver for the system of Lagrange multipliers self.lSolver = LinearSolver(S, solver_parameters=self.solver_parameters, options_prefix='lambda_solve') # Result function for the multiplier solution self.lambdar = Function(Vtrace) # Place to put result of u rho reconstruction self.urho = Function(M) # Reconstruction of broken u and rho u_, rho_ = self.urho.split() # Split operators for two-stage reconstruction _A = A.blocks _K = K.blocks _Xr = X_r.blocks A00 = _A[0, 0] A01 = _A[0, 1] A10 = _A[1, 0] A11 = _A[1, 1] K0 = _K[0, 0] Ru = _Xr[0] Rrho = _Xr[1] lambda_vec = AssembledVector(self.lambdar) # rho reconstruction Srho = A11 - A10 * A00.inv * A01 rho_expr = Srho.solve(Rrho - A10 * A00.inv * (Ru - K0 * lambda_vec), decomposition="PartialPivLU") self._assemble_rho = create_assembly_callable(rho_expr, tensor=rho_) # "broken" u reconstruction rho_vec = AssembledVector(rho_) u_expr = A00.solve(Ru - A01 * rho_vec - K0 * lambda_vec, decomposition="PartialPivLU") self._assemble_u = create_assembly_callable(u_expr, tensor=u_) # Project broken u into the HDiv space using facet averaging. # Weight function counting the dofs of the HDiv element: shapes = (Vu.finat_element.space_dimension(), np.prod(Vu.shape)) weight_kernel = """ for (int i=0; i<%d; ++i) { for (int j=0; j<%d; ++j) { w[i][j] += 1.0; }}""" % shapes self._weight = Function(Vu) par_loop(weight_kernel, dx, {"w": (self._weight, INC)}) # Averaging kernel self._average_kernel = """ for (int i=0; i<%d; ++i) { for (int j=0; j<%d; ++j) { vec_out[i][j] += vec_in[i][j]/w[i][j]; }}""" % shapes # HDiv-conforming velocity self.u_hdiv = Function(Vu) # Reconstruction of theta theta = TrialFunction(Vtheta) gamma = TestFunction(Vtheta) self.theta = Function(Vtheta) theta_eqn = gamma*(theta - theta_in + dot(k, self.u_hdiv)*dot(k, grad(thetabar))*beta)*dx theta_problem = LinearVariationalProblem(lhs(theta_eqn), rhs(theta_eqn), self.theta) self.theta_solver = LinearVariationalSolver(theta_problem, solver_parameters={'ksp_type': 'cg', 'pc_type': 'bjacobi', 'pc_sub_type': 'ilu'}, options_prefix='thetabacksubstitution') self.bcs = [DirichletBC(Vu, 0.0, "bottom"), DirichletBC(Vu, 0.0, "top")]