示例#1
0
 def __init__(self, alpha=0.05, beta=0.05, elo0=0, elo1=5):
     self.a = math.log(beta / (1 - alpha))
     self.b = math.log((1 - beta) / alpha)
     self.elo0 = elo0
     self.elo1 = elo1
     self.s0 = LLRcalc.L_(elo0)
     self.s1 = LLRcalc.L_(elo1)
     self.clamped = False
     self.LLR_drift_variance = LLRcalc.LLR_drift_variance_alt2
示例#2
0
文件: sprt.py 项目: tomtor/fishtest
 def elo_to_score(self, elo):
     """
     "elo" is expressed in our current elo_model."""
     if self.elo_model == "normalized":
         nt = elo / LLRcalc.nelo_divided_by_nt
         return nt * self.sigma_pg + 0.5
     else:
         return LLRcalc.L_(elo)
示例#3
0
文件: sprt.py 项目: tomtor/fishtest
 def lelo_to_elo(self, lelo):
     """
     For external use. "elo" is expressed in our current elo_model.
     "lelo" is logistic."""
     if self.elo_model == "logistic":
         return lelo
     score = LLRcalc.L_(lelo)
     nt = (score - 0.5) / self.sigma_pg
     return nt * LLRcalc.nelo_divided_by_nt
示例#4
0
文件: sprt.py 项目: tomtor/fishtest
 def outcome_prob(self, elo):
     """
     The probability of a test with the given elo with worse outcome
     (faster fail, slower pass or a pass changed into a fail)."""
     s = LLRcalc.L_(elo)
     mu_LLR, var_LLR = self.LLR_drift_variance(self.pdf, self.s0, self.s1,
                                               s)
     sigma_LLR = math.sqrt(var_LLR)
     return Brownian(a=self.a, b=self.b, mu=mu_LLR,
                     sigma=sigma_LLR).outcome_cdf(T=self.T, y=self.llr)