示例#1
0
def calc2(MS, R0=None, R1=None):
    if R0 == None:
        R0 = numpy.arange(0.05, 1.0, 0.05)
    if R1 == None:
        R1 = numpy.arange(0.05, 1.1, 0.05)

    LLmax = float('-inf')
    Mfit = copy.deepcopy(MS.M)
    print('Turning debugging OFF')
    fitglobals.debugoff()
    f = open('data.txt', 'w')
    f.write('# A0 A1 LL\n')
    for A0 in R0:
        for A1 in R1:
            # Mfit.P.A = numpy.matrix([[A0, 0], [0,A1]])
            MS.setParams(A0, A1, Mfit)
            LL = fitEKF.ekf(MS.Data, Mfit)
            if LL > LLmax:
                A0max = A0
                A1max = A1
                LLmax = LL
            f.write('%s %s %s\n' % (A0, A1, LL))
            print A0, A1, LL
        f.write('\n')
        print ""
    f.close()
    print 'Max Like =', LLmax, '@ (A0,A1) =', [A0max, A1max]
    simParams = MS.getParams()
    LLsim = MS.loglike(simParams[0], simParams[1])
    print 'Sim Like =', LLsim, '@ (A0, A1) =', simParams[0], simParams[1]
示例#2
0
 def __init__(self):
     fitglobals.debugoff()
     P = noise.NoiseParams()
     P.tstop = 20
     P.dt = 0.1
     A0 = 0.5
     A1 = 0.1
     P.A = numpy.matrix([[A0, 0], [0, A1]])
     # P.B, next line define noise injected to each component, uncorrelated
     P.B = numpy.matrix([[0.5, 0], [0, 0.4]])
     P.InitialCov = numpy.matrix([[1, 0], [0, 1]])
     elist = numpy.arange(0.1, 20, 0.1).tolist()
     elist2 = numpy.arange(0.05, 20.0, 0.05).tolist()
     O1 = models.ObserveState0(P, 5)
     O2 = models.ObserveStateSum(P, 6)
     # O1.Times.set([2,4,6,8,10,12,14,16,18,20])
     # O2.Times.set([3,6,9,12,15,18])
     O1.Times.set(elist)
     O2.Times.set(elist)
     O1.sigma = 0.001
     O2.sigma = 0.0001
     Obs = models.ObservationModel(P, 5, [O1, O2])
     Sys = models.DecayModel(P, 0, 2)
     # Sys.Injection.set([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
     Sys.Injection.set(elist2)
     Initial = numpy.matrix([[1.0], [2.0]])
     self.M = models.Model(Sys, Obs, P, Initial)
     self.sim(False)
示例#3
0
文件: ch3_11p.py 项目: nrnhines/bfilt
from neuron import h
import fitglobals
fitglobals.debugoff()
h.load_file('mulfit.hoc')
h.load_file('eonerunmlf.hoc')
import nrnbfilt
h.load_file('ch3_11p.ses')

h('objref nb')
h.nb = h.List("PythonObject").o(0)