示例#1
0
def main():
    parser = argparse.ArgumentParser(description='pythia8 fastjet on the fly',
                                     prog=os.path.basename(__file__))
    pyconf.add_standard_pythia_args(parser)
    parser.add_argument('--ignore-mycfg',
                        help="ignore some settings hardcoded here",
                        default=False,
                        action='store_true')

    args = parser.parse_args()

    # print the banner first
    fj.ClusterSequence.print_banner()
    print()
    # set up our jet definition and a jet selector
    jet_R0 = 0.4
    jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
    jet_selector = fj.SelectorPtMin(80.0) & fj.SelectorPtMax(
        100.0) & fj.SelectorAbsEtaMax(1)
    # jet_selector = fj.SelectorPtMin(40.0) & fj.SelectorPtMax(200.0) &fj.SelectorAbsEtaMax(1)
    print(jet_def)

    all_jets = []

    mycfg = ['PhaseSpace:pThatMin = 80']
    # mycfg = ['PhaseSpace:pThatMin = 40']
    if args.ignore_mycfg:
        mycfg = []
    pythia = pyconf.create_and_init_pythia_from_args(args, mycfg)
    if not pythia:
        perror("pythia initialization failed.")
        return

    jet_def_lund = fj.JetDefinition(fj.cambridge_algorithm, 1.0)
    lund_gen = fjcontrib.LundGenerator(jet_def_lund)
    print(lund_gen.description())
    dy_groomer = fjcontrib.DynamicalGroomer(jet_def_lund)
    print(dy_groomer.description())
    # sd = fjcontrib.SoftDrop(0, 0.1, 1.0)
    sd = fjcontrib.SoftDrop(0, 0.2, 1.0)
    print(sd)

    # jet_def_rc01 = fj.JetDefinition(fj.cambridge_algorithm, 0.1)
    # jet_def_rc02 = fj.JetDefinition(fj.cambridge_algorithm, 0.2)
    # print (jet_def_rc01)
    # print (jet_def_rc02)
    # rc = fjcontrib.Recluster(jet_def_rc, True)

    jet_def_rc01 = fj.JetDefinition(fj.antikt_algorithm, 0.1)
    jet_def_rc02 = fj.JetDefinition(fj.antikt_algorithm, 0.2)
    print(jet_def_rc01)
    print(jet_def_rc02)
    #rc = fjcontrib.Recluster(jet_def_rc, True)

    # tw = treewriter.RTreeWriter(name = 'lsjvsx', file_name = 'leadsj_vs_x.root')
    tw = treewriter.RTreeWriter(name='lsjvsx',
                                file_name='leadsj_vs_x_bias80.root')

    if args.nev < 100:
        args.nev = 100
    for i in tqdm.tqdm(range(args.nev)):
        if not pythia.next():
            continue
        # parts = pythiafjext.vectorize(pythia, True, -1, 1, False)
        partons = pythiafjext.vectorize_select(pythia, [pythiafjext.kParton],
                                               0, True)
        parts = pythiafjext.vectorize_select(
            pythia, [pythiafjext.kFinal, pythiafjext.kCharged], 0, False)
        # parts = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], 0, False)
        jets = jet_selector(jet_def(parts))

        # for j in tqdm.tqdm(jets):
        for j in jets:
            j_type = match_dR(j, partons, jet_R0 / 2.)
            j_sd = sd.result(j)
            sd_info = fjcontrib.get_SD_jet_info(j_sd)
            rc_sjets01 = fj.sorted_by_pt(jet_def_rc01(j.constituents()))
            rc_sjets02 = fj.sorted_by_pt(jet_def_rc02(j.constituents()))
            tw.fill_branches(
                j=j,
                lund=[ls for ls in lund_gen.result(j)],
                dyg1=dy_groomer.result(j, 1),
                sd=j_sd,
                sd_z=sd_info.z,
                sd_mu=sd_info.mu,
                sd_Delta=sd_info.dR,
                lsjet01=rc_sjets01[0],
                nsjet01=len(rc_sjets01),
                sjet01=rc_sjets01,
                lsjet02=rc_sjets02[0],
                nsjet02=len(rc_sjets02),
                sjet02=rc_sjets02,
                ppid=j_type[0],
                pquark=j_type[1],
                pglue=j_type[2]  # this is redundancy
            )
            tw.fill_tree()

    pythia.stat()

    tw.write_and_close()
示例#2
0
def main():
	parser = argparse.ArgumentParser(description='pythia8 fastjet on the fly', prog=os.path.basename(__file__))
	pyconf.add_standard_pythia_args(parser)
	parser.add_argument('--nw', help="no warn", default=False, action='store_true')
	parser.add_argument('--ignore-mycfg', help="ignore some settings hardcoded here", default=False, action='store_true')
	parser.add_argument('--enable-background', help="enable background calc", default=False, action='store_true')
	parser.add_argument('--output', help="output file name", default='leadsj_vs_x_output.root', type=str)

	# for background
	parser.add_argument('--cent-bin', help="centraility bin 0 is the  0-5 percent most central bin", type=int, default=0)
	parser.add_argument('--seed', help="pr gen seed", type=int, default=1111)
	parser.add_argument('--harmonics', help="set harmonics flag (0 : v1 - v5) , (1 : v2 - v5) , (2: v3 - v5) , (3: v1 - v4) , (4: v1 - v3) , (5: uniform dN/dphi no harmonics) , (6 : v1 - v2 , v4 - v5) , (7 : v1 - v3 , v5) , (8 : v1 , v3 - v5) , (9 : v1 only) , (10 : v2 only) , (11 : v3 only) , (12 : v4 only) , (13 : v5 only)", 
						type=int, default=5)
	parser.add_argument('--eta', help="set eta range must be uniform (e.g. abs(eta) < 0.9, which is ALICE TPC fiducial acceptance)",
						type=float, default=0.9)
	parser.add_argument('--qa', help="PrintOutQAHistos", default=False, action='store_true')

	parser.add_argument('--dRmax', default=0.25, type=float)
	parser.add_argument('--alpha', default=0, type=float)


	args = parser.parse_args()

	# print the banner first
	fj.ClusterSequence.print_banner()
	print()
	# set up our jet definition and a jet selector
	jet_R0 = 0.4
	jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
	jet_selector = fj.SelectorPtMin(args.py_pthatmin) & fj.SelectorPtMax(1000.0) & fj.SelectorAbsEtaMax(args.eta - jet_R0)
	# jet_selector = fj.SelectorPtMin(40.0) & fj.SelectorPtMax(200.0) &fj.SelectorAbsEtaMax(1)
	print(jet_def)

	all_jets = []

	# mycfg = ['PhaseSpace:pThatMin = 80']
	# mycfg = ['PhaseSpace:pThatMin = 40']	
	mycfg = ['']	
	if args.ignore_mycfg:
		mycfg = []
	pythia = pyconf.create_and_init_pythia_from_args(args, mycfg)
	if not pythia:
		perror("pythia initialization failed.")
		return

	jet_def_lund = fj.JetDefinition(fj.cambridge_algorithm, 1.0)
	lund_gen = fjcontrib.LundGenerator(jet_def_lund)
	print (lund_gen.description())
	dy_groomer = fjcontrib.DynamicalGroomer(jet_def_lund)
	print (dy_groomer.description())

	# sd = fjcontrib.SoftDrop(0, 0.1, 1.0)
	sd01 = fjcontrib.SoftDrop(0, 0.1, 1.0)
	print (sd01)
	sd02 = fjcontrib.SoftDrop(0, 0.2, 1.0)
	print (sd02)

	# jet_def_rc01 = fj.JetDefinition(fj.cambridge_algorithm, 0.1)
	# jet_def_rc02 = fj.JetDefinition(fj.cambridge_algorithm, 0.2)
	# print (jet_def_rc01)
	# print (jet_def_rc02)
	# rc = fjcontrib.Recluster(jet_def_rc, True)

	jet_def_rc01 = fj.JetDefinition(fj.antikt_algorithm, 0.1)
	jet_def_rc02 = fj.JetDefinition(fj.antikt_algorithm, 0.2)
	print (jet_def_rc01)
	print (jet_def_rc02)
	#rc = fjcontrib.Recluster(jet_def_rc, True)

	# tw = treewriter.RTreeWriter(name = 'lsjvsx', file_name = 'leadsj_vs_x.root')
	tw = treewriter.RTreeWriter(name = 'lsjvsx', file_name = args.output)
	tgbkg = None
	be = None
	if args.enable_background:
		# ROOT.gSystem.Load("libpyjetty_TennGen.dylib")
		# tgbkg = ROOT.TennGen() # //constructor
		# tgbkg.SetCentralityBin(args.cent_bin) # //centraility bin 0 is the  0-5 % most central bin
		# tgbkg.SetRandomSeed(args.seed) # //setting the seed
		# tgbkg.SetHarmonics(args.harmonics) # // set harmonics flag (0 : v1 - v5) , (1 : v2 - v5) , (2: v3 - v5) , (3: v1 - v4) , (4: v1 - v3) , (5: uniform dN/dphi no harmonics) , (6 : v1 - v2 , v4 - v5) , (7 : v1 - v3 , v5) , (8 : v1 , v3 - v5) , (9 : v1 only) , (10 : v2 only) , (11 : v3 only) , (12 : v4 only) , (13 : v5 only)
		# tgbkg.SetEtaRange(args.eta) # //set eta range must be uniform (e.g. |eta| < 0.9, which is ALICE TPC fiducial acceptance)
		# tgbkg.PrintOutQAHistos(args.qa) #
		# tgbkg.InitializeBackground() #

		from pyjetty.mputils import BoltzmannEvent
		be = BoltzmannEvent(mean_pt=0.7, multiplicity=2000 * args.eta * 2, max_eta=max_eta, max_pt=100)
		print(be)

		from pyjetty.mputils import CEventSubtractor, CSubtractorJetByJet
		cs = CEventSubtractor(alpha=args.alpha, max_distance=args.dRmax, max_eta=args.eta, bge_rho_grid_size=0.25, max_pt_correct=100)
		print(cs)


	if args.nev < 100:
		args.nev = 100
	for i in tqdm.tqdm(range(args.nev)):
		if not pythia.next():
			continue
		# parts = pythiafjext.vectorize(pythia, True, -1, 1, False)
		partons = pythiafjext.vectorize_select(pythia, [pythiafjext.kParton], 0, True)
		parts = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal, pythiafjext.kCharged], 0, False)
		# parts = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], 0, False)
		jets = jet_selector(jet_def(parts))

		# for j in tqdm.tqdm(jets):
		for j in jets:
			j_type = match_dR(j, partons, jet_R0 / 2.)
			if j_type[0] is None:
				if args.nw:
					continue
				pwarning('Jet with no parton label')
				continue

			j_sd02 = sd02.result(j)
			sd02_info = fjcontrib.get_SD_jet_info(j_sd02)
			j_sd01 = sd01.result(j)
			sd01_info = fjcontrib.get_SD_jet_info(j_sd01)

			rc_sjets01 = fj.sorted_by_pt(jet_def_rc01(j.constituents()))
			rc_sjets02 = fj.sorted_by_pt(jet_def_rc02(j.constituents()))
			tw.fill_branches(	j 			= j, 
								lund 		= [ls for ls in lund_gen.result(j)], 
								dyg1 		= dy_groomer.result(j, 1), 

								sd01 		= j_sd01, 
								sd01_z 		= sd01_info.z, 
								sd01_mu 	= sd01_info.mu, 
								sd01_Delta 	= sd01_info.dR, 

								sd02 		= j_sd02, 
								sd02_z 		= sd02_info.z, 
								sd02_mu 	= sd02_info.mu, 
								sd02_Delta 	= sd02_info.dR, 

								# breaking compatibility
								# sd 			= j_sd, 
								# sd_z 		= sd_info.z, 
								# sd_mu 		= sd_info.mu, 
								# sd_Delta 	= sd_info.dR, 

								lsjet01 	= rc_sjets01[0],
								nsjet01    	= len(rc_sjets01),
								sjet01     	= rc_sjets01,
								lsjet02 	= rc_sjets02[0],
								nsjet02    	= len(rc_sjets02),
								sjet02     	= rc_sjets02,

								ppid       	= j_type[0],
								pquark     	= j_type[1],
								pglue      	= j_type[2], # this is redundancy

								pycode 		= pythia.info.code(),
								pysigmagen  = pythia.info.sigmaGen(),
								pysigmaerr  = pythia.info.sigmaErr(),
								pyid1       = pythia.info.id1pdf(),
								pyid2       = pythia.info.id1pdf(),
								pyx1 	    = pythia.info.x1pdf(),
								pyx2       	= pythia.info.x2pdf(),
								pypdf1      = pythia.info.pdf1(),
								pyQfac 		= pythia.info.QFac(),
								pyalphaS 	= pythia.info.alphaS(),

								pypthat 	= pythia.info.pTHat(),
								pymhat 		= pythia.info.mHat()

							 )
			if be:
				bg_parts = be.generate(offset=10000)
				full_event = bg_parts
				tmp = [full_event.push_back(psj) for psj in j.constituents()]
				if cs:
					cs_parts = cs.process_event(full_event)
					rho = cs.bge_rho.rho()
					bg_jets = fj.sorted_by_pt(jet_def(cs_parts))
					for bj in bg_jets:
						if fjtools.matched_pt(bj, j) > 0.5:
							pass

			tw.fill_tree()

	pythia.stat()

	tw.write_and_close()
def main():
    parser = argparse.ArgumentParser(description='pythia8 fastjet on the fly',
                                     prog=os.path.basename(__file__))
    pyconf.add_standard_pythia_args(parser)
    parser.add_argument('--ignore-mycfg',
                        help="ignore some settings hardcoded here",
                        default=False,
                        action='store_true')

    args = parser.parse_args()

    # print the banner first
    fj.ClusterSequence.print_banner()
    print()
    # set up our jet definition and a jet selector
    jet_R0 = 0.4
    jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
    jet_selector = fj.SelectorPtMin(100.0) & fj.SelectorAbsEtaMax(1)
    print(jet_def)

    all_jets = []

    mycfg = ['PhaseSpace:pThatMin = 100']
    if args.ignore_mycfg:
        mycfg = []
    pythia = pyconf.create_and_init_pythia_from_args(args, mycfg)
    if not pythia:
        print("[e] pythia initialization failed.")
        return
    if args.nev < 100:
        args.nev = 100
    for i in tqdm.tqdm(range(args.nev)):
        if not pythia.next():
            continue
        parts = pythiafjext.vectorize(pythia, True, -1, 1, False)
        jets = jet_selector(jet_def(parts))
        all_jets.extend(jets)

    pythia.stat()

    jet_def_lund = fj.JetDefinition(fj.cambridge_algorithm, 1.0)
    lund_gen = fjcontrib.LundGenerator(jet_def_lund)

    print('making lund diagram for all jets...', lund_gen.description())
    lunds = [lund_gen.result(j) for j in all_jets]

    print(
        'listing lund plane points... Delta, kt - for {} selected jets'.format(
            len(all_jets)))
    for l in lunds:
        print('- jet pT={0:5.2f} eta={1:5.2f}'.format(l[0].pair().perp(),
                                                      l[0].pair().eta()))
        print('  Deltas={}'.format([s.Delta() for s in l]))
        print('  kts={}'.format([s.kt() for s in l]))
        print()

    dy_groomer = fjcontrib.DynamicalGroomer(jet_def_lund)
    print(dy_groomer.description())
    dy_groomed = [dy_groomer.result(j, 2) for j in all_jets]
    print('listing results from dynamical grooming...')
    for l in dy_groomed:
        print(l, '  kt={}'.format(l.kt()))

    for j in all_jets:
        rdyng2 = dy_groomer.result(j, 2)
        rdyng1 = dy_groomer.result(j, 1)
        print('jet', j)
        print('- all splits kts:',
              sorted([s.kt() for s in dy_groomer.lund_splits()], reverse=True))
        print('- dynG kt a=1:', rdyng1.kt(), 'a=2:', rdyng2.kt())
        print()

    return
    print('[i] reclustering and using soft drop...')
    jet_def_rc = fj.JetDefinition(fj.cambridge_algorithm, 0.1)
    print('Reclustering:', jet_def_rc)

    rc = fjcontrib.Recluster(jet_def_rc, True)
    sd = fjcontrib.SoftDrop(0, 0.1, 1.0)
    for i, j in enumerate(all_jets):
        j_rc = rc.result(j)
        print()
        print('- [{0:3d}] orig pT={1:10.3f} reclustered pT={2:10.3f}'.format(
            i, j.perp(), j_rc.perp()))
        j_sd = sd.result(j)
        print('  |-> after soft drop pT={0:10.3f} delta={1:10.3f}'.format(
            j_sd.perp(),
            j_sd.perp() - j.perp()))
        sd_info = fjcontrib.get_SD_jet_info(j_sd)
        print(
            "  |-> SD jet params z={0:10.3f} dR={1:10.3f} mu={2:10.3f}".format(
                sd_info.z, sd_info.dR, sd_info.mu))
示例#4
0
def main():
    parser = argparse.ArgumentParser(description='pythia8 fastjet on the fly',
                                     prog=os.path.basename(__file__))
    pyconf.add_standard_pythia_args(parser)
    parser.add_argument('--ignore-mycfg',
                        help="ignore some settings hardcoded here",
                        default=False,
                        action='store_true')
    parser.add_argument('--output',
                        help="output file name",
                        default="test_hjet_parton.root",
                        type=str)
    parser.add_argument('--no-tt',
                        help="do not require TT to accept the event",
                        default=False,
                        action='store_true')
    parser.add_argument('--charged',
                        help="analyze only the charged particles of the FS",
                        default=False,
                        action='store_true')
    parser.add_argument('--max-jet-pt',
                        help="maximum jet pT to consider",
                        type=float,
                        default=100.)
    args = parser.parse_args()

    # print the banner first
    fj.ClusterSequence.print_banner()
    print()
    # set up our jet definition and a jet selector
    hadron_eta_max = 2.0
    jet_R0 = 0.4
    jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
    jet_selector = fj.SelectorPtMin(10.0) & fj.SelectorPtMax(
        args.max_jet_pt) & fj.SelectorAbsEtaMax(hadron_eta_max - jet_R0)
    # jet_selector = fj.SelectorPtMin(40.0) & fj.SelectorPtMax(200.0) &fj.SelectorAbsEtaMax(hadron_eta_max - jet_R0)
    hTT6_selector = fj.SelectorPtMin(6) & fj.SelectorPtMax(
        7) & fj.SelectorAbsEtaMax(hadron_eta_max)
    hTT12_selector = fj.SelectorPtMin(12) & fj.SelectorPtMax(
        50) & fj.SelectorAbsEtaMax(hadron_eta_max)
    hTT20_selector = fj.SelectorPtMin(20) & fj.SelectorPtMax(
        50) & fj.SelectorAbsEtaMax(hadron_eta_max)

    pythia_fs_part_selection = [pythiafjext.kFinal]
    if args.charged is True:
        pwarning('running with charged particles in the final state')
        pythia_fs_part_selection.append(pythiafjext.kCharged)
    print(jet_def)

    all_jets = []

    # mycfg = ['PhaseSpace:pThatMin = 80']
    # mycfg = ['PhaseSpace:pThatMin = 6']
    # mycfg = ['PhaseSpace:pThatMin = 12']
    # mycfg = ['PhaseSpace:pThatMin = 40']
    mycfg = []
    if args.ignore_mycfg:
        mycfg = []
    pythia = pyconf.create_and_init_pythia_from_args(args, mycfg)
    if not pythia:
        perror("pythia initialization failed.")
        return

    jet_def_lund = fj.JetDefinition(fj.cambridge_algorithm, 1.0)
    lund_gen = fjcontrib.LundGenerator(jet_def_lund)
    print(lund_gen.description())
    dy_groomer = fjcontrib.DynamicalGroomer(jet_def_lund)
    print(dy_groomer.description())
    # sd = fjcontrib.SoftDrop(0, 0.1, 1.0)
    sd = fjcontrib.SoftDrop(0, 0.2, 1.0)
    print(sd)

    # jet_def_rc01 = fj.JetDefinition(fj.cambridge_algorithm, 0.1)
    # jet_def_rc02 = fj.JetDefinition(fj.cambridge_algorithm, 0.2)
    # print (jet_def_rc01)
    # print (jet_def_rc02)
    # rc = fjcontrib.Recluster(jet_def_rc, True)

    jet_def_rc01 = fj.JetDefinition(fj.antikt_algorithm, 0.1)
    jet_def_rc02 = fj.JetDefinition(fj.antikt_algorithm, 0.2)
    print(jet_def_rc01)
    print(jet_def_rc02)
    #rc = fjcontrib.Recluster(jet_def_rc, True)

    # tw = treewriter.RTreeWriter(name = 'lsjvsx', file_name = 'leadsj_vs_x.root')
    tw = treewriter.RTreeWriter(name='lsjvsx', file_name=args.output)

    zero_psj = fj.PseudoJet(0, 0, 10, 10)

    if args.nev < 100:
        args.nev = 100
    t = tqdm.tqdm(total=args.nev)
    while t.n < args.nev:
        if not pythia.next():
            continue

        # information about the leading process
        # print(pythia.info.code(), pythia.info.nameProc(pythia.info.code()))
        # continue
        # parts = pythiafjext.vectorize(pythia, True, -1, 1, False)
        partons = pythiafjext.vectorize_select(pythia, [pythiafjext.kParton],
                                               0, True)
        # parts = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal, pythiafjext.kCharged], 0, False)
        # parts = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], 0, False)
        parts = pythiafjext.vectorize_select(pythia, pythia_fs_part_selection,
                                             0, False)

        hTT6 = zero_psj
        hTT6s = fj.sorted_by_pt(hTT6_selector(parts))
        if len(hTT6s) > 0:
            hTT6 = hTT6s[0]

        hTT12 = zero_psj
        hTT12s = fj.sorted_by_pt(hTT12_selector(parts))
        if len(hTT12s) > 0:
            hTT12 = hTT12s[0]

        hTT20 = zero_psj
        hTT20s = fj.sorted_by_pt(hTT20_selector(parts))
        if len(hTT20s) > 0:
            hTT20 = hTT20s[0]

        if args.no_tt is False:
            if hTT12.perp() < 1 and hTT6.perp() < 1 and hTT20.perp() < 1:
                continue

        jets = jet_selector(jet_def(parts))

        # for j in tqdm.tqdm(jets):
        for j in jets:
            t.update(1)
            j_type = match_dR(j, partons, jet_R0 / 2.)
            if j_type[0] is None:
                continue
            j_sd = sd.result(j)
            sd_info = fjcontrib.get_SD_jet_info(j_sd)
            rc_sjets01 = fj.sorted_by_pt(jet_def_rc01(j.constituents()))
            rc_sjets02 = fj.sorted_by_pt(jet_def_rc02(j.constituents()))
            tw.fill_branches(
                j=j,
                mult=len(parts),
                lund=[ls for ls in lund_gen.result(j)],
                dyg1=dy_groomer.result(j, 1),
                sd=j_sd,
                sd_z=sd_info.z,
                sd_mu=sd_info.mu,
                sd_Delta=sd_info.dR,
                lsjet01=rc_sjets01[0],
                nsjet01=len(rc_sjets01),
                sjet01=rc_sjets01,
                lsjet02=rc_sjets02[0],
                nsjet02=len(rc_sjets02),
                sjet02=rc_sjets02,
                hTT6=hTT6,
                hTT12=hTT12,
                hTT20=hTT20,
                dphi6=j.delta_phi_to(hTT6),
                dphi12=j.delta_phi_to(hTT12),
                dphi20=j.delta_phi_to(hTT20),
                ppid=j_type[0],
                pquark=j_type[1],
                pglue=j_type[2],  # this is redundancy
                pycode=pythia.info.code(),
                pysigmagen=pythia.info.sigmaGen(),
                pysigmaerr=pythia.info.sigmaErr(),
                pyid1=pythia.info.id1pdf(),
                pyid2=pythia.info.id1pdf(),
                pyx1=pythia.info.x1pdf(),
                pyx2=pythia.info.x2pdf(),
                pypdf1=pythia.info.pdf1(),
                pyQfac=pythia.info.QFac(),
                pyalphaS=pythia.info.alphaS(),
                pypthat=pythia.info.pTHat(),
                pymhat=pythia.info.mHat())
            tw.fill_tree()

    t.close()
    pythia.stat()

    tw.write_and_close()
示例#5
0
def main():
    parser = argparse.ArgumentParser(description='pythia8 fastjet on the fly',
                                     prog=os.path.basename(__file__))
    pyconf.add_standard_pythia_args(parser)
    # could use --py-seed
    parser.add_argument('--fj-R', help='jet finder R', default=0.8, type=float)
    parser.add_argument('--user-seed',
                        help='pythia seed',
                        default=1111,
                        type=int)
    parser.add_argument('--output',
                        default="pythia_dyngroom_test_output.root",
                        type=str)
    parser.add_argument('--min-jet-pt',
                        help='jet pt selection',
                        default=450.,
                        type=float)
    parser.add_argument('--max-jet-pt',
                        help='jet pt selection',
                        default=1000.,
                        type=float)
    args = parser.parse_args()

    if args.user_seed < 0:
        args.user_seed = 1111
    pinfo('user seed for pythia', args.user_seed)
    # mycfg = ['PhaseSpace:pThatMin = 100']
    mycfg = ['Random:setSeed=on', 'Random:seed={}'.format(args.user_seed)]
    mycfg.append('HadronLevel:all=off')
    pythia = pyconf.create_and_init_pythia_from_args(args, mycfg)
    if args.nev < 100:
        args.nev = 100

    # print the banner first
    fj.ClusterSequence.print_banner()
    print()
    # set up our jet definition and a jet selector
    jet_R0 = args.fj_R
    jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
    print(jet_def)

    # hadron level - ALICE
    max_eta_hadron = 3.
    pwarning('max eta for particles after hadronization set to',
             max_eta_hadron)
    parts_selector_h = fj.SelectorAbsEtaMax(max_eta_hadron)
    jet_selector = fj.SelectorPtMin(args.min_jet_pt) & fj.SelectorPtMax(
        args.max_jet_pt) & fj.SelectorAbsEtaMax(max_eta_hadron - 1.05 * jet_R0)

    max_eta_parton = max_eta_hadron + 2. * jet_R0
    pwarning('max eta for partons set to', max_eta_parton)
    parts_selector_p = fj.SelectorAbsEtaMax(max_eta_parton)

    outf = ROOT.TFile(args.output, 'recreate')
    outf.cd()
    t = ROOT.TTree('t', 't')
    tw = RTreeWriter(tree=t)

    jet_def_lund = fj.JetDefinition(fj.cambridge_algorithm, 1.0)
    dy_groomer = fjcontrib.DynamicalGroomer(jet_def_lund)
    print(dy_groomer.description())

    # event loop
    for iev in tqdm.tqdm(range(args.nev)):
        if not pythia.next():
            continue

        # parts_pythia_p = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], add_particle_info = True)
        parts_pythia_p = pythiafjext.vectorize_select(pythia,
                                                      [pythiafjext.kFinal], 0,
                                                      True)
        parts_pythia_p_selected = parts_selector_p(parts_pythia_p)

        hstatus = pythia.forceHadronLevel()
        if not hstatus:
            pwarning('forceHadronLevel false event', iev)
            continue
        # parts_pythia_h = pythiafjext.vectorize_select(pythia, [pythiafjext.kHadron, pythiafjext.kCharged])
        # parts_pythia_h = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], add_particle_info = True)
        parts_pythia_h = pythiafjext.vectorize_select(pythia,
                                                      [pythiafjext.kFinal], 0,
                                                      True)
        parts_pythia_h_selected = parts_selector_h(parts_pythia_h)

        jets_p = jet_selector(fj.sorted_by_pt(jet_def(parts_pythia_p)))
        jets_h = jet_selector(fj.sorted_by_pt(jet_def(parts_pythia_h)))

        for j in jets_p:
            tw.fill_branch('iev', iev)
            tw.fill_branch('parton_j', j)
            for a in [0.1, 1.0, 2.0]:
                dy_groomed = dy_groomer.result(j, a)
                if dy_groomed.pair().pt() > 0:
                    tw.fill_branch('parton_j_logkt_dg{:.1f}'.format(a),
                                   ROOT.TMath.Log(dy_groomed.kt()))
                    tw.fill_branch('parton_j_log1odR_dg{:.1f}'.format(a),
                                   ROOT.TMath.Log(1 / dy_groomed.Delta()))
            max_pt_groomed = dy_groomer.max_pt_softer(j)
            if max_pt_groomed.pair().pt() > 0:
                tw.fill_branch('parton_j_logkt_max_pt_softer',
                               ROOT.TMath.Log(max_pt_groomed.kt()))
                tw.fill_branch('parton_j_log1odR_max_pt_softer',
                               ROOT.TMath.Log(1 / max_pt_groomed.Delta()))
            max_z_groomed = dy_groomer.max_z(j)
            if max_z_groomed.pair().pt() > 0:
                tw.fill_branch('parton_j_logkt_max_z',
                               ROOT.TMath.Log(max_z_groomed.kt()))
                tw.fill_branch('parton_j_log1odR_max_z',
                               ROOT.TMath.Log(1 / max_z_groomed.Delta()))
            max_kt_groomed = dy_groomer.max_kt(j)
            if max_kt_groomed.pair().pt() > 0:
                tw.fill_branch('parton_j_logkt_max_kt',
                               ROOT.TMath.Log(max_kt_groomed.kt()))
                tw.fill_branch('parton_j_log1odR_max_kt',
                               ROOT.TMath.Log(1 / max_kt_groomed.Delta()))
            max_kappa_groomed = dy_groomer.max_kappa(j)
            if max_kappa_groomed.pair().pt() > 0:
                tw.fill_branch('parton_j_logkt_max_kappa',
                               ROOT.TMath.Log(max_kappa_groomed.kt()))
                tw.fill_branch('parton_j_log1odR_max_kappa',
                               ROOT.TMath.Log(1 / max_kappa_groomed.Delta()))
        for j in jets_h:
            tw.fill_branch('hadron_j', j)
            for a in [0.1, 1.0, 2.0]:
                dy_groomed = dy_groomer.result(j, a)
                if dy_groomed.pair().pt() > 0:
                    tw.fill_branch('hadron_j_logkt_dg{:.1f}'.format(a),
                                   ROOT.TMath.Log(dy_groomed.kt()))
                    tw.fill_branch('hadron_j_log1odR_dg{:.1f}'.format(a),
                                   ROOT.TMath.Log(1 / dy_groomed.Delta()))
            max_pt_groomed = dy_groomer.max_pt_softer(j)
            if max_pt_groomed.pair().pt() > 0:
                tw.fill_branch('hadron_j_logkt_max_pt_softer',
                               ROOT.TMath.Log(max_pt_groomed.kt()))
                tw.fill_branch('hadron_j_log1odR_max_pt_softer',
                               ROOT.TMath.Log(1 / max_pt_groomed.Delta()))
            max_z_groomed = dy_groomer.max_z(j)
            if max_z_groomed.pair().pt() > 0:
                tw.fill_branch('hadron_j_logkt_max_z',
                               ROOT.TMath.Log(max_z_groomed.kt()))
                tw.fill_branch('hadron_j_log1odR_max_z',
                               ROOT.TMath.Log(1 / max_z_groomed.Delta()))
            max_kt_groomed = dy_groomer.max_kt(j)
            if max_kt_groomed.pair().pt() > 0:
                tw.fill_branch('hadron_j_logkt_max_kt',
                               ROOT.TMath.Log(max_kt_groomed.kt()))
                tw.fill_branch('hadron_j_log1odR_max_kt',
                               ROOT.TMath.Log(1 / max_kt_groomed.Delta()))
            max_kappa_groomed = dy_groomer.max_kappa(j)
            if max_kappa_groomed.pair().pt() > 0:
                tw.fill_branch('hadron_j_logkt_max_kappa',
                               ROOT.TMath.Log(max_kappa_groomed.kt()))
                tw.fill_branch('hadron_j_log1odR_max_kappa',
                               ROOT.TMath.Log(1 / max_kappa_groomed.Delta()))
        if len(jets_p) > 0 or len(jets_h) > 0:
            tw.fill_tree()

    pythia.stat()
    outf.Write()
    outf.Close()
示例#6
0
def main():
    parser = argparse.ArgumentParser(description='pythia8 fastjet on the fly',
                                     prog=os.path.basename(__file__))
    pyconf.add_standard_pythia_args(parser)
    # could use --py-seed
    parser.add_argument('--fj-R', help='jet finder R', default=0.8, type=float)
    parser.add_argument('--user-seed',
                        help='pythia seed',
                        default=-1,
                        type=int)
    parser.add_argument('--output',
                        default='{}.root'.format(os.path.basename(__file__)),
                        type=str)
    parser.add_argument('--min-jet-pt',
                        help='jet pt selection',
                        default=50.,
                        type=float)
    parser.add_argument('--max-jet-pt',
                        help='jet pt selection',
                        default=1000.,
                        type=float)
    parser.add_argument('--npart-min',
                        help='minimum npart in Argantyr',
                        default=2,
                        type=int)
    args = parser.parse_args()

    if args.user_seed < 0:
        args.user_seed = -1
        mycfg = []
    else:
        pinfo('user seed for pythia', args.user_seed)
        # mycfg = ['PhaseSpace:pThatMin = 100']
        mycfg = ['Random:setSeed=on', 'Random:seed={}'.format(args.user_seed)]

    pythia = pyconf.create_and_init_pythia_from_args(args, mycfg)
    if args.nev < 100:
        args.nev = 100

    # print the banner first
    fj.ClusterSequence.print_banner()
    print()
    # set up our jet definition and a jet selector
    jet_R0 = args.fj_R
    jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
    print(jet_def)

    # hadron level - ALICE
    max_eta_hadron = 3.
    pwarning('max eta for particles after hadronization set to',
             max_eta_hadron)
    parts_selector_h = fj.SelectorAbsEtaMax(max_eta_hadron)
    jet_selector = fj.SelectorPtMin(args.min_jet_pt) & fj.SelectorPtMax(
        args.max_jet_pt) & fj.SelectorAbsEtaMax(max_eta_hadron - 1.05 * jet_R0)

    parts_selector_cent = fj.SelectorAbsEtaMax(5.) & fj.SelectorAbsEtaMin(3.)

    hepmc2output = '{}.hepmc2.dat'.format(args.output.replace('.root', ''))
    pyhepmc2writer = pythiaext.Pythia8HepMC2Wrapper(hepmc2output)

    outf = ROOT.TFile(args.output, 'recreate')
    outf.cd()
    t = ROOT.TTree('t', 't')
    tw = RTreeWriter(tree=t)
    tch = ROOT.TTree('tch', 'tch')
    twch = RTreeWriter(tree=tch)

    te = ROOT.TTree('te', 'te')
    twe = RTreeWriter(tree=te)

    jet_def_lund = fj.JetDefinition(fj.cambridge_algorithm, 1.0)
    dy_groomer = fjcontrib.DynamicalGroomer(jet_def_lund)
    print(dy_groomer.description())

    sds = []
    sd01 = fjcontrib.SoftDrop(0, 0.1, 1.0)
    sd02 = fjcontrib.SoftDrop(0, 0.2, 1.0)
    sds.append(sd01)
    sds.append(sd02)

    # event loop
    for iev in tqdm.tqdm(range(args.nev)):
        if not pythia.next():
            continue

        twe.clear()
        tw.clear()
        twch.clear()

        weight = pythia.info.weight()
        if args.py_PbPb:
            # from main113.cc
            # Also fill the number of (absorptively and diffractively)
            # wounded nucleaons.
            nw = pythia.info.hiinfo.nAbsTarg() + pythia.info.hiinfo.nDiffTarg(
            ) + pythia.info.hiinfo.nAbsProj() + pythia.info.hiinfo.nDiffProj()
            fill_ncoll_branches(pythia, twe)
        else:
            nw = 2
        twe.fill_branch('nw', nw)
        twe.fill_branch('w', weight)

        parts_pythia_h = pythiafjext.vectorize_select(pythia,
                                                      [pythiafjext.kFinal], 0,
                                                      False)
        parts_pythia_h_selected = parts_selector_h(parts_pythia_h)

        parts_pythia_ch = pythiafjext.vectorize_select(
            pythia, [pythiafjext.kFinal, pythiafjext.kCharged], 0, False)
        parts_pythia_ch_selected = parts_selector_h(parts_pythia_ch)

        nch_total = len(parts_pythia_ch)
        twe.fill_branch('nch', nch_total)

        ncharged_fwd = len(parts_selector_cent(parts_pythia_ch))
        twe.fill_branch('nchfwd', ncharged_fwd)

        twe.fill_branch('iev', iev)
        if args.py_PbPb and args.npart_min > nw:
            twe.fill_tree()
            continue

        if args.py_PbPb:
            pyhepmc2writer.fillEvent(pythia)

        # do the rest only if centrality right
        tw.fill_branch('iev', iev)
        tw.fill_branch('w', weight)
        twch.fill_branch('iev', iev)
        twch.fill_branch('w', weight)

        jets_h = jet_selector(fj.sorted_by_pt(jet_def(parts_pythia_h)))
        jets_h_ch = jet_selector(fj.sorted_by_pt(jet_def(parts_pythia_ch)))

        [
            fill_branches(tw, j, dy_groomer, alphas=[0.1, 1.0, 2.0], sds=sds)
            for j in jets_h
        ]
        if len(jets_h) > 0:
            tw.fill_tree()
            if args.py_PbPb is False:
                pyhepmc2writer.fillEvent(pythia)

        [
            fill_branches(twch, j, dy_groomer, alphas=[0.1, 1.0, 2.0], sds=sds)
            for j in jets_h_ch
        ]
        if len(jets_h_ch) > 0:
            twch.fill_tree()

        twe.fill_tree()

    pythia.stat()
    outf.Write()
    outf.Close()
示例#7
0
    def analyze_groomed_jet(self, grooming_setting, jet, jetR, R_max):

        # Check additional acceptance criteria
        if not self.utils.is_det_jet_accepted(jet):
            return

        jet_pt_ungroomed = jet.pt()

        grooming_label = self.utils.grooming_label(grooming_setting)

        # Construct SD groomer, and groom jet
        if 'sd' in grooming_setting:

            zcut = grooming_setting['sd'][0]
            beta = grooming_setting['sd'][1]
            sd = fjcontrib.SoftDrop(beta, zcut, jetR)
            jet_def_recluster = fj.JetDefinition(fj.cambridge_algorithm, jetR)
            reclusterer = fjcontrib.Recluster(jet_def_recluster)
            sd.set_reclustering(True, reclusterer)
            if self.debug_level > 2:
                print('SoftDrop groomer is: {}'.format(sd.description()))

            jet_sd = sd.result(jet)

        # Construct Dynamical groomer, and groom jet
        if 'dg' in grooming_setting:

            a = grooming_setting['dg'][0]
            jet_def_lund = fj.JetDefinition(fj.cambridge_algorithm, 2 * jetR)
            dy_groomer = fjcontrib.DynamicalGroomer(jet_def_lund)
            if self.debug_level > 2:
                print('Dynamical groomer is: {}'.format(
                    dy_groomer.description()))

            jet_dg_lund = dy_groomer.result(jet, a)
            jet_dg = jet_dg_lund.pair()

        # Compute groomed observables
        if 'sd' in grooming_setting:

            # If both SD and DG are specified, first apply DG, then SD
            if 'dg' in grooming_setting:
                if jet_dg.has_constituents():
                    jet_groomed = sd.result(jet_dg)
                else:
                    return
            else:
                jet_groomed = jet_sd

            sd_info = fjcontrib.get_SD_jet_info(jet_groomed)
            theta_g = sd_info.dR / jetR
            zg = sd_info.z

        elif 'dg' in grooming_setting:
            jet_groomed = jet_dg

            # (https://phab.hepforge.org/source/fastjetsvn/browse/contrib/contribs/LundPlane/tags/1.0.3/LundGenerator.hh)
            dR = jet_dg_lund.Delta()
            theta_g = dR / jetR
            zg = jet_dg_lund.z()

        # Fill histograms
        if R_max:
            suffix = '_Rmax{}'.format(R_max)
        else:
            suffix = ''
        if grooming_setting in self.obs_grooming_settings['theta_g']:
            getattr(
                self, 'h_theta_g_JetPt_R{}_{}{}'.format(
                    jetR, grooming_label,
                    suffix)).Fill(jet_pt_ungroomed, theta_g)
        if grooming_setting in self.obs_grooming_settings['zg']:
            getattr(self, 'h_zg_JetPt_R{}_{}{}'.format(
                jetR, grooming_label, suffix)).Fill(jet_pt_ungroomed, zg)

        # Fill jet axis difference
        if 'jet_axis' in self.observable_list:

            # Recluster with WTA (with larger jet R)
            jet_def_wta = fj.JetDefinition(fj.cambridge_algorithm, 2 * jetR)
            jet_def_wta.set_recombination_scheme(fj.WTA_pt_scheme)
            if self.debug_level > 2:
                print('WTA jet definition is:', jet_def_wta)
            reclusterer_wta = fjcontrib.Recluster(jet_def_wta)
            jet_wta = reclusterer_wta.result(jet)

            self.fill_jet_axis_histograms(jet, jet_groomed, jet_wta, jetR,
                                          grooming_setting, grooming_label)