def test_r2_evaluator(): predictions = pd.DataFrame({ 'target': [0, 1, 2], 'prediction': [0.5, 0.9, 1.5] }) result = r2_evaluator(predictions) assert result['r2_evaluator__target'] == 0.745
def test_extract(): boston = load_boston() df = pd.DataFrame(boston['data'], columns=boston['feature_names']) df['target'] = boston['target'] df['time'] = pd.date_range(start='2015-01-01', periods=len(df)) np.random.seed(42) df['space'] = np.random.randint(0, 100, size=len(df)) # Define train function train_fn = linear_regression_learner( features=boston['feature_names'].tolist(), target="target") # Define evaluator function base_evaluator = combined_evaluators(evaluators=[ r2_evaluator(target_column='target', prediction_column='prediction'), spearman_evaluator(target_column='target', prediction_column='prediction') ]) splitter = split_evaluator(eval_fn=base_evaluator, split_col='RAD', split_values=[4.0, 5.0, 24.0]) temporal_week_splitter = temporal_split_evaluator(eval_fn=base_evaluator, time_col='time', time_format='%Y-%W') temporal_year_splitter = temporal_split_evaluator(eval_fn=base_evaluator, time_col='time', time_format='%Y') eval_fn = combined_evaluators(evaluators=[base_evaluator, splitter]) temporal_week_eval_fn = combined_evaluators( evaluators=[base_evaluator, temporal_week_splitter]) temporal_year_eval_fn = combined_evaluators( evaluators=[base_evaluator, temporal_year_splitter]) # Define splitters cv_split_fn = out_of_time_and_space_splitter(n_splits=5, in_time_limit='2016-01-01', time_column='time', space_column='space') tlc_split_fn = time_learning_curve_splitter( training_time_limit='2016-01-01', time_column='time', min_samples=0) sc_split_fn = stability_curve_time_splitter( training_time_limit='2016-01-01', time_column='time', min_samples=0) fw_sc_split_fn = forward_stability_curve_time_splitter( training_time_start="2015-01-01", training_time_end="2016-01-01", holdout_gap=timedelta(days=30), holdout_size=timedelta(days=30), step=timedelta(days=30), time_column='time') # Validate results cv_results = validator(df, cv_split_fn, train_fn, eval_fn)['validator_log'] tlc_results = validator(df, tlc_split_fn, train_fn, eval_fn)['validator_log'] sc_results = validator(df, sc_split_fn, train_fn, eval_fn)['validator_log'] fw_sc_results = validator(df, fw_sc_split_fn, train_fn, eval_fn)['validator_log'] # temporal evaluation results predict_fn, _, _ = train_fn(df) temporal_week_results = temporal_week_eval_fn(predict_fn(df)) temporal_year_results = temporal_year_eval_fn(predict_fn(df)) # Define extractors base_extractors = combined_evaluator_extractor(base_extractors=[ evaluator_extractor(evaluator_name="r2_evaluator__target"), evaluator_extractor(evaluator_name="spearman_evaluator__target") ]) splitter_extractor = split_evaluator_extractor( split_col='RAD', split_values=[4.0, 5.0, 24.0], base_extractor=base_extractors) temporal_week_splitter_extractor = temporal_split_evaluator_extractor( time_col='time', time_format='%Y-%W', base_extractor=base_extractors) temporal_year_splitter_extractor = temporal_split_evaluator_extractor( time_col='time', time_format='%Y', base_extractor=base_extractors) assert extract(cv_results, base_extractors).shape == (5, 9) assert extract(cv_results, splitter_extractor).shape == (15, 10) assert extract(tlc_results, base_extractors).shape == (12, 9) assert extract(tlc_results, splitter_extractor).shape == (36, 10) assert extract(sc_results, base_extractors).shape == (5, 9) assert extract(sc_results, splitter_extractor).shape == (15, 10) assert extract(fw_sc_results, base_extractors).shape == (3, 9) assert extract(fw_sc_results, splitter_extractor).shape == (9, 10) n_time_week_folds = len(df['time'].dt.strftime('%Y-%W').unique()) n_time_year_folds = len(df['time'].dt.strftime('%Y').unique()) assert temporal_week_splitter_extractor(temporal_week_results).shape == ( n_time_week_folds, 3) assert temporal_year_splitter_extractor(temporal_year_results).shape == ( n_time_year_folds, 3)