示例#1
0
def test_underscore_diff_rate(xes: fd.ERSource):

    x = xes._differential_rate(data_tensor=xes.data_tensor[0],
                               ptensor=xes.ptensor_from_kwargs())
    assert isinstance(x, tf.Tensor)
    assert x.dtype == fd.float_type()

    y = xes._differential_rate(data_tensor=xes.data_tensor[0],
                               ptensor=xes.ptensor_from_kwargs(elife=100e3))
    np.testing.assert_array_less(-fd.tf_to_np(tf.abs(x - y)), 0)
示例#2
0
def test_detector_response(xes: fd.ERSource):
    r = xes.detector_response('photon', xes.data_tensor[0],
                              xes.ptensor_from_kwargs()).numpy()
    assert r.shape == (n_events, xes.dimsizes['photon_detected'])

    # r is p(S1 | detected quanta) as a function of detected quanta
    # so the sum over r isn't meaningful (as long as we're frequentists)

    # Maximum likelihood est. of detected quanta is correct
    max_is = r.argmax(axis=1)
    domain = xes.domain('photon_detected').numpy()
    found_mle = np_lookup_axis1(domain, max_is)
    np.testing.assert_array_less(
        np.abs(xes.data['photon_detected_mle'] - found_mle), 0.5)
示例#3
0
def test_detection_prob(xes: fd.ERSource):
    r = xes.detection_p('electron', xes.data_tensor[0],
                        xes.ptensor_from_kwargs()).numpy()
    assert r.shape == (n_events, xes.dimsizes['electron_detected'],
                       xes.dimsizes['electron_produced'])

    # Sum of probability over detected electrons must be
    #  A) in [0, 1] for any value of electrons_produced
    #     (it would be 1 everywhere if we considered
    #      infinitely many electrons_detected values)
    # TODO: this holds to 1e-4... is that enough?
    rs = r.sum(axis=1)
    np.testing.assert_array_less(rs, 1 + 1e-4)
    np.testing.assert_array_less(1 - rs, 1 + 1e-4)

    # B) 1 at the MLE of electrons_produced,
    #    where all reasonably probable electrons_detected values
    #    should be probed
    mle_is = np.round(xes.data['electron_produced_mle'] -
                      xes.data['electron_produced_min']).values.astype(np.int)
    np.testing.assert_almost_equal(np_lookup_axis1(rs, mle_is),
                                   np.ones(n_events),
                                   decimal=2)
示例#4
0
def test_nphnel(xes: fd.ERSource):
    """Test (nph, nel) rate matrix"""
    r = xes.rate_nphnel(xes.data_tensor[0], xes.ptensor_from_kwargs()).numpy()
    assert r.shape == (n_events, xes.dimsizes['photon_produced'],
                       xes.dimsizes['electron_produced'])