def get_loss(self, data): with self.graph.as_default(): loss = self.sess.run(self.loss, feed_dict={ self.features: process_x(data['x']), self.labels: process_y(data['y']) }) return loss
def get_softmax(self, data): with self.graph.as_default(): soft_max = self.sess.run(self.soft_max, feed_dict={ self.features: process_x(data['x']), self.labels: process_y(data['y']) }) return soft_max
def get_kl_gradients(self, data, output2): with self.graph.as_default(): kl_grads = self.sess.run(self.kl_grads, feed_dict={ self.features: process_x(data['x']), self.labels: process_y(data['y']), self.output2: output2 }) return kl_grads
def test(self, data): ''' Args: data: dict of the form {'x': [list], 'y': [list]} ''' with self.graph.as_default(): tot_correct, loss = self.sess.run( [self.eval_metric_ops, self.loss], feed_dict={ self.features: process_x(data['x']), self.labels: process_y(data['y']) }) return tot_correct, loss