示例#1
0
    def setUpClass(self):
        # This method instantiates the fleet and executes a simple request to get the device response for evaluation

        # Create test fleet
        kwargs = {}
        kwargs['start_time'] = start_time
        kwargs['service_weight'] = 0.75
        kwargs['sim_step'] = delt
        grid_type = 1
        fleet = create_fleet(fleet_name, grid_type, **kwargs)
        if fleet is None:
            raise 'Could not create fleet with name ' + fleet_name

        cycle = 5  #24
        dt_day = [(start_time + delt * i) for i in range(cycle)]
        p_needed = [(100 * i) for i in range(cycle)]

        requests = [
            FleetRequest(ts=dt_day[i],
                         sim_step=delt,
                         start_time=start_time,
                         p=p_needed[i]) for i in range(cycle)
        ]
        fleet_responses = fleet.forecast(requests)
        self.responses = fleet_responses
示例#2
0
def integration_test(service_name, fleet_name, **kwargs):
    # Create test service
    service = create_service(service_name)
    if service is None:
        raise 'Could not create service with name ' + service_name

    grid_type = 2

    # Create test fleet
    fleet = create_fleet(fleet_name, grid_type, **kwargs)
    if fleet is None:
        raise 'Could not create fleet with name ' + fleet_name

    # Assign test fleet to test service to use
    service.fleet = fleet
    assigned_fleet_name = service.fleet.__class__.__name__

    start_time = kwargs['start_time']

    # Run test
    if service_name == 'DistributionVoltageService':
        fleet_responses, fleet_requests = service.request_loop()

    else:
        pass
示例#3
0
 def test_assigned_service_kW(self):
     kwargs = {}
     kwargs['start_time'] = start_time
     kwargs['service_weight'] = 0.75
     kwargs['sim_step'] = delt
     grid_type = 1
     fleet = create_fleet(fleet_name, grid_type, **kwargs)
     if fleet is None:
         raise 'Could not create fleet with name ' + fleet_name
     service_kW = fleet.assigned_service_kW()
     self.assertGreater(
         service_kW, 0,
         'Fleet Service weight is not returned by assign_service_kW')
示例#4
0
    def setUpClass(self):
        #This method instantiates the fleet and executes a simple request to get the device response for evaluation

        # Create test fleet
        kwargs = {}
        kwargs['start_time'] = start_time
        kwargs['service_weight'] = 0.75
        kwargs['sim_step'] = delt
        grid_type = 1
        fleet = create_fleet(fleet_name, grid_type, **kwargs)
        if fleet is None:
            raise 'Could not create fleet with name ' + fleet_name

        fleet_request = FleetRequest(cur_time, delt, start_time, Prequest,
                                     Qrequest)
        fleet_response = fleet.process_request(fleet_request)
        self.response = fleet_response
示例#5
0
    def setUpClass(self):
        # This method instantiates the fleet and executes a simple request to get the device response for evaluation

        # Create test fleet
        from grid_info_artificial_inertia import GridInfo
        grid = GridInfo('Grid_Info_data_artificial_inertia.csv')
        grid_type = 2
        kwargs = {}
        kwargs['start_time'] = start_time
        kwargs['service_weight'] = 0.75
        kwargs['sim_step'] = delt
        kwargs['autonomous'] = 'autonomous'

        cur_time = start_time + timedelta(seconds=75)
        fleet = create_fleet(fleet_name, grid_type, **kwargs)
        if fleet is None:
            raise 'Could not create fleet with name ' + fleet_name

        fleet_request = FleetRequest(cur_time, delt, start_time, Prequest,
                                     Qrequest)
        fleet_response = fleet.process_request(fleet_request)
        self.response = fleet_response
        self.f = grid.get_frequency(cur_time, 0, start_time)
示例#6
0
def integration_test(service_name, fleet_name, service_type='Traditional', **kwargs):
    start_time = kwargs['start_time']
    sim_step = dynamic_time_step(service_name, fleet_name)
    kwargs['sim_step'] = sim_step
    
    # Create test service
    service = create_service(service_name, **kwargs)
    if service is None:
        raise 'Could not create service with name ' + service_name

    grid_type = 1
    if service_name == 'ArtificialInertia':
        grid_type = 2
        
    # Create test fleet
    fleet = create_fleet(fleet_name, grid_type, **kwargs)
    if fleet is None:
        raise 'Could not create fleet with name ' + fleet_name

    # Assign test fleet to test service to use
    service.fleet = fleet
    assigned_fleet_name = service.fleet.__class__.__name__

    # Run test
    if service_name == 'Regulation':
        monthtimes = dict({
            # 'January': ["2017-01-01 00:00:00", "2017-01-31 23:59:59"],
            # 'February': ["2017-02-01 00:00:00", "2017-02-28 23:59:59"],
            # 'March': ["2017-03-01 00:00:00", "2017-03-31 23:59:59"],
            # 'April': ["2017-04-01 00:00:00", "2017-04-30 23:59:59"],
            # 'May': ["2017-05-01 00:00:00", "2017-05-31 23:59:59"],
            # 'June': ["2017-06-01 00:00:00", "2017-06-30 23:59:59"],
            # 'July': ["2017-07-01 00:00:00", "2017-07-31 23:59:59"],
            'August': ["2017-08-01 16:00:00", "2017-08-01 18:59:59"],
            # 'September': ["2017-09-01 00:00:00", "2017-09-30 23:59:59"],
            # 'October': ["2017-10-01 00:00:00", "2017-10-31 23:59:59"],
            # 'November': ["2017-11-01 00:00:00", "2017-11-30 23:59:59"],
            # 'December': ["2017-12-01 00:00:00", "2017-12-31 23:59:00"]
        })

        all_results = pd.DataFrame(columns=['performance_score', 'hourly_integrated_MW',
                                        'mileage_ratio', 'Regulation_Market_Clearing_Price(RMCP)',
                                        'Reg_Clearing_Price_Credit'])
        for month in monthtimes.keys():
            print('Starting ' + str(month) + ' ' + service_type + ' at ' + datetime.now().strftime('%H:%M:%S'))
            fleet_response = service.request_loop(service_type=service_type,
                                                    start_time=parser.parse(monthtimes[month][0]),
                                                    end_time=parser.parse(monthtimes[month][1]),
                                                    sim_step=sim_step,
                                                    clearing_price_filename='historical-ancillary-service-data-2017.xls',
                                                    fleet_name=assigned_fleet_name)
            month_results = pd.DataFrame.from_dict(fleet_response, orient='index')
            all_results = pd.concat([all_results, month_results])
            print('     Finished ' + str(month) + ' ' + service_type)
        # Fix formatting of all_results dataframe to remove tuples
        all_results[['Perf_score', 'Delay_score', 'Corr_score', 'Prec_score']] = all_results['performance_score'].apply(
            pd.Series)
        all_results[['MCP', 'REG_CCP', 'REG_PCP']] = all_results['Regulation_Market_Clearing_Price(RMCP)'].apply(
            pd.Series)
        all_results[['Reg_Clr_Pr_Credit', 'Reg_RMCCP_Credit', 'Reg_RMPCP_Credit']] = all_results[
            'Reg_Clearing_Price_Credit'].apply(pd.Series)
        all_results.drop(
            columns=['performance_score', 'Regulation_Market_Clearing_Price(RMCP)', 'Reg_Clearing_Price_Credit'],
            inplace=True)
        print('Writing result .csv')
        file_dir = join(dirname(abspath(__file__)), 'services', 'reg_service', 'results', '')
        all_results.to_csv(file_dir + datetime.now().strftime(
            '%Y%m%d') + '_annual_hourlyresults_' + service_type + '_' + fleet_name + '.csv')

    elif service_name == 'Reserve':
        monthtimes = dict({
            # 'January': ["2017-01-08 00:00:00", "2017-01-08 23:59:59"],
            # 'February': ["2017-02-01 00:00:00", "2017-02-28 23:59:59"],
            # 'March': ["2017-03-01 00:00:00", "2017-03-31 23:59:59"],
            # 'April': ["2017-04-01 00:00:00", "2017-04-30 23:59:59"],
            # 'May': ["2017-05-01 00:00:00", "2017-05-31 23:59:59"],
            # 'June': ["2017-06-01 00:00:00", "2017-06-30 23:59:59"],
             'June': ["2017-06-07 00:00:00", "2017-06-07 23:59:59"],
            # 'June': ["2017-06-07 00:00:00", "2017-06-08 23:59:59"],
            # 'July': ["2017-07-01 00:00:00", "2017-07-31 23:59:59"],
            # 'August': ["2017-08-01 00:00:00", "2017-08-31 23:59:59"],
            # 'September': ["2017-09-01 00:00:00", "2017-09-30 23:59:59"],
            # 'October': ["2017-10-01 00:00:00", "2017-10-31 23:59:59"],
            # 'November': ["2017-11-01 00:00:00", "2017-11-30 23:59:59"],
            # 'December': ["2017-12-01 00:00:00", "2017-12-31 23:59:00"]
        })

        all_results = pd.DataFrame(columns=['Event_Start_Time', 'Event_End_Time',
                                            'Response_to_Request_Ratio', 'Response_MeetReqOrMax_Index_number',
                                            'Event_Duration_mins', 'Response_After10minToEndOr30min_To_First10min_Ratio',
                                            'Requested_MW', 'Responded_MW_at_10minOrEnd', 
                                            'Responded_MW_After10minToEndOr30min', 'Shortfall_Ratio',
                                            'Response_0min_Min_MW', 'Response_10minOrEnd_Max_MW',
                                            'Response_After10minToEnd_MW', 'Avg_Ramp_Rate', 'Best_Ramp_Rate',
                                            'SRMCP_DollarsperMWh_DuringEvent',
                                            'SRMCP_DollarsperMWh_SinceLastEvent',
                                            'Service_Value_NotInclShortfall_dollars',
                                            'Service_Value_InclShortfall_dollars',
                                            'Period_from_Last_Event_Hours',
                                            'Period_from_Last_Event_Days'])
        if 'battery' in assigned_fleet_name.lower():
            annual_signals = pd.DataFrame(columns=['Date_Time', 'Request', 'Response', 'SoC'])
        else:
            annual_signals = pd.DataFrame(columns=['Date_Time', 'Request', 'Response'])

        previous_event_end = pd.Timestamp('05/01/2017 00:00:00')
        for month in monthtimes.keys():
            print('Starting ' + str(month) + ' at ' + datetime.now().strftime('%H:%M:%S'))
            start_time = parser.parse(monthtimes[month][0])
            fleet_response = service.request_loop(start_time=start_time,
                                                  end_time=parser.parse(monthtimes[month][1]),
                                                  sim_step=sim_step,
                                                  clearing_price_filename=start_time.strftime('%Y%m') + '.csv',
                                                  previous_event_end=previous_event_end,
                                                  four_scenario_testing=False,
                                                  fleet_name=assigned_fleet_name)
            try:
                previous_event_end = fleet_response[0].Event_End_Time[-1]
            except:
                # If the dataframe in fleet_response[0] has no entries, then attempting
                # to index the Event_End_Time column will throw an error.  This allows
                # for skipping past that error.
                pass

            all_results = pd.concat([all_results, fleet_response[0]], sort=True)
            annual_signals = pd.concat([annual_signals, fleet_response[1]], sort=True)
        print('Writing event results .csv')
        file_dir = join(dirname(abspath(__file__)), 'integration_test', 'reserve_service')
        all_results.to_csv(join(file_dir,
                                datetime.now().strftime('%Y%m%d') + '_event_results_reserve_' + assigned_fleet_name + '.csv'))

        print('Saving .csv of annual signals and SOC (if necessary)')
        annual_signals.to_csv(
            join(file_dir,
                 datetime.now().strftime('%Y%m%d') + '_annual_signals_reserve_' + assigned_fleet_name + '.csv'))

    elif service_name == 'ArtificialInertia':

        fleet_responses = service.request_loop(start_time=start_time, sim_step=sim_step)
        metrics_calc_start_time = kwargs['metrics_calc_start_time']
        metrics_calc_end_time = kwargs['metrics_calc_end_time']

        # service_efficacy, p_service, p_togrid, t, f = service.calculation(fleet_name, fleet_responses, start_time,
        #                                                      metrics_calc_start_time=metrics_calc_start_time,
        #                                                      metrics_calc_end_time=metrics_calc_end_time)

        service_efficacy, p_service, p_togrid, t, f = service.calculation(fleet_name, fleet_responses, start_time)
        print(service_efficacy)

    elif service_name == 'DistributionVoltageService':
        service.sim_step = kwargs['sim_step']
        fleet_responses, fleet_requests = service.request_loop(start_time=start_time)

    elif service_name == 'EnergyMarketService':
        fleet_requests, fleet_responses = service.request_loop(sim_step=sim_step)

    elif service_name == 'PeakManagementService':
        start_time = service.drive_cycle["dt"][0]
        service.request_loop(start_time, service_name, fleet_name=assigned_fleet_name)
        service.fleet.output_impact_metrics(service_name)        
    else:
        raise 'Could not recognize service with name ' + service_name