示例#1
0
def main():
    os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2'

    # SET MODEL
    u_net = UNet([32, 64, 128, 256, 512, 1024, 2048],
                 K,
                 None,
                 verbose=False,
                 useBN=True)
    if not os.path.exists(ROOT_DIR):
        raise Exception('Directory does not exist')

    state_dict = torch.load(TEST_UNET_WEIGHTS_PATH,
                            map_location=lambda storage, loc: storage)
    if 'checkpoint' in TEST_UNET_WEIGHTS_PATH:
        state_dict = state_dict['state_dict']
    new_state_dict = OrderedDict()

    for k, v in state_dict.items():
        name = k.replace('model.', '')
        new_state_dict[name] = v
    u_net.load_state_dict(new_state_dict, strict=True)
    model = Wrapper(u_net, main_device=MAIN_DEVICE)

    work = SpecChannelUnet(model,
                           ROOT_DIR,
                           PRETRAINED,
                           main_device=MAIN_DEVICE,
                           trackgrad=TRACKGRAD)
    work.model_version = 'UNIT_WEIGHTED_TESTING'
    work.train()
示例#2
0
def main():
    os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2'

    # SET MODEL
    u_net = UNet([32, 64, 128, 256, 512, 1024, 2048], K, None, verbose=False, useBN=True, dropout=DROPOUT)
    model = Wrapper(u_net, main_device=MAIN_DEVICE)

    if not os.path.exists(ROOT_DIR):
        raise Exception('Directory does not exist')
    work = DWA(model, ROOT_DIR, PRETRAINED, main_device=MAIN_DEVICE, trackgrad=TRACKGRAD)
    work.model_version = 'DWA'
    work.train()