def rename_event_value_column_to_resource_name( df_dict: Dict[str, pd.DataFrame]) -> Dict[str, pd.DataFrame]: """Replace the column name "event_source" with the resource name, for each resource in the dictionary.""" return { df_name: df.rename(columns={"event_value": capitalize(df_name)}) for df_name, df in df_dict.items() }
def replace_source_with_label(data: pd.DataFrame) -> pd.DataFrame: """ Column "source" is dropped, and column "label" is created. The former column should contain DataSource objects, while the latter will contain only strings. """ if data is not None: # source is in the multindex when we trace sources individually if "source" not in data.columns and "source" in data.index.names: data.reset_index(level="source", inplace=True) if "source" in data.columns: data["label"] = data["source"].apply(lambda x: capitalize( x.label) if isinstance(x, DataSource) else x.capitalize()) data.drop("source", axis=1, inplace=True) return data
def bar_chart( sensor: "Sensor", # noqa F821 **override_chart_specs: dict, ): unit = sensor.unit if sensor.unit else "a.u." event_value_field_definition = dict( title=f"{capitalize(sensor.sensor_type)} ({unit})", format=".3s", stack=None, **FIELD_DEFINITIONS["event_value"], ) chart_specs = { "description": "A simple bar chart.", "title": capitalize(sensor.name), "mark": "bar", "encoding": { "x": FIELD_DEFINITIONS["event_start"], "x2": FIELD_DEFINITIONS["event_end"], "y": event_value_field_definition, "color": FIELD_DEFINITIONS["source"], "opacity": { "value": 0.7 }, "tooltip": [ FIELD_DEFINITIONS["full_date"], event_value_field_definition, FIELD_DEFINITIONS["source"], ], }, "transform": [ { "calculate": f"datum.event_start + {sensor.event_resolution.total_seconds() * 1000}", "as": "event_end", }, ], } for k, v in override_chart_specs.items(): chart_specs[k] = v return chart_specs
def portfolio_view(): # noqa: C901 """Portfolio view. By default, this page shows live results (production, consumption and market data) from the user's portfolio. Time windows for which the platform has identified upcoming balancing opportunities are highlighted. The page can also be used to navigate historical results. """ set_time_range_for_session() start = session.get("start_time") end = session.get("end_time") resolution = session.get("resolution") # Get plot perspective perspectives = ["production", "consumption"] default_stack_side = "production" # todo: move to user config setting show_stacked = request.values.get("show_stacked", default_stack_side) perspectives.remove(show_stacked) show_summed: str = perspectives[0] plot_label = f"Stacked {show_stacked} vs aggregated {show_summed}" # Get structure and data assets: List[Asset] = get_assets( order_by_asset_attribute="display_name", order_direction="asc" ) represented_asset_types, markets, resource_dict = get_structure(assets) for resource_name, resource in resource_dict.items(): resource.load_sensor_data( [Power, Price], start=start, end=end, resolution=resolution, exclude_source_types=["scheduling script"], ) # The resource caches the results ( supply_resources_df_dict, demand_resources_df_dict, production_per_asset_type, consumption_per_asset_type, production_per_asset, consumption_per_asset, ) = get_power_data(resource_dict) price_bdf_dict, average_price_dict = get_price_data(resource_dict) # Pick a perspective for summing and for stacking sum_dict = ( demand_resources_df_dict.values() if show_summed == "consumption" else supply_resources_df_dict.values() ) power_sum_df = ( pd.concat(sum_dict, axis=1).sum(axis=1).to_frame(name="event_value") if sum_dict else pd.DataFrame() ) stack_dict = ( rename_event_value_column_to_resource_name(supply_resources_df_dict).values() if show_summed == "consumption" else rename_event_value_column_to_resource_name( demand_resources_df_dict ).values() ) df_stacked_data = pd.concat(stack_dict, axis=1) if stack_dict else pd.DataFrame() # Create summed plot power_sum_df = data_or_zeroes(power_sum_df, start, end, resolution) x_range = plotting.make_range( pd.date_range(start, end, freq=resolution, closed="left") ) fig_profile = plotting.create_graph( power_sum_df, unit="MW", title=plot_label, x_range=x_range, x_label="Time (resolution of %s)" % time_utils.freq_label_to_human_readable_label(resolution), y_label="Power (in MW)", legend_location="top_right", legend_labels=(capitalize(show_summed), None, None), show_y_floats=True, non_negative_only=True, ) fig_profile.plot_height = 450 fig_profile.plot_width = 900 # Create stacked plot df_stacked_data = data_or_zeroes(df_stacked_data, start, end, resolution) df_stacked_areas = stack_df(df_stacked_data) num_areas = df_stacked_areas.shape[1] if num_areas <= 2: colors = ["#99d594", "#dddd9d"] else: colors = palettes.brewer["Spectral"][num_areas] df_stacked_data = time_utils.tz_index_naively(df_stacked_data) x_points = np.hstack((df_stacked_data.index[::-1], df_stacked_data.index)) fig_profile.grid.minor_grid_line_color = "#eeeeee" for a, area in enumerate(df_stacked_areas): fig_profile.patch( x_points, df_stacked_areas[area].values, color=colors[a], alpha=0.8, line_color=None, legend=df_stacked_data.columns[a], level="underlay", ) # Flexibility numbers are mocked for now curtailment_per_asset = {a.name: 0 for a in assets} shifting_per_asset = {a.name: 0 for a in assets} profit_loss_flexibility_per_asset = {a.name: 0 for a in assets} curtailment_per_asset_type = {k: 0 for k in represented_asset_types.keys()} shifting_per_asset_type = {k: 0 for k in represented_asset_types.keys()} profit_loss_flexibility_per_asset_type = { k: 0 for k in represented_asset_types.keys() } shifting_per_asset["48_r"] = 1.1 profit_loss_flexibility_per_asset["48_r"] = 76000 shifting_per_asset_type["one-way EVSE"] = shifting_per_asset["48_r"] profit_loss_flexibility_per_asset_type[ "one-way EVSE" ] = profit_loss_flexibility_per_asset["48_r"] curtailment_per_asset["hw-onshore"] = 1.3 profit_loss_flexibility_per_asset["hw-onshore"] = 84000 curtailment_per_asset_type["wind turbines"] = curtailment_per_asset["hw-onshore"] profit_loss_flexibility_per_asset_type[ "wind turbines" ] = profit_loss_flexibility_per_asset["hw-onshore"] # Add referral to mocked control action this_hour = time_utils.get_most_recent_hour() next4am = [ dt for dt in [this_hour + timedelta(hours=i) for i in range(1, 25)] if dt.hour == 4 ][0] # TODO: show when user has (possible) actions in order book for a time slot if current_user.is_authenticated and ( current_user.has_role("admin") or "wind" in current_user.email or "charging" in current_user.email ): plotting.highlight( fig_profile, next4am, next4am + timedelta(hours=1), redirect_to="/control" ) # actions df_actions = pd.DataFrame(index=power_sum_df.index, columns=["event_value"]).fillna( 0 ) if next4am in df_actions.index: if current_user.is_authenticated: if current_user.has_role("admin"): df_actions.loc[next4am] = -2.4 # mock two actions elif "wind" in current_user.email: df_actions.loc[next4am] = -1.3 # mock one action elif "charging" in current_user.email: df_actions.loc[next4am] = -1.1 # mock one action next2am = [ dt for dt in [this_hour + timedelta(hours=i) for i in range(1, 25)] if dt.hour == 2 ][0] if next2am in df_actions.index: if next2am < next4am and ( current_user.is_authenticated and ( current_user.has_role("admin") or "wind" in current_user.email or "charging" in current_user.email ) ): # mock the shift "payback" (actually occurs earlier in our mock example) df_actions.loc[next2am] = 1.1 next9am = [ dt for dt in [this_hour + timedelta(hours=i) for i in range(1, 25)] if dt.hour == 9 ][0] if next9am in df_actions.index: # mock some other ordered actions that are not in an opportunity hour anymore df_actions.loc[next9am] = 3.5 fig_actions = plotting.create_graph( df_actions, unit="MW", title="Ordered balancing actions", x_range=x_range, y_label="Power (in MW)", ) fig_actions.plot_height = 150 fig_actions.plot_width = fig_profile.plot_width fig_actions.xaxis.visible = False if current_user.is_authenticated and ( current_user.has_role("admin") or "wind" in current_user.email or "charging" in current_user.email ): plotting.highlight( fig_actions, next4am, next4am + timedelta(hours=1), redirect_to="/control" ) portfolio_plots_script, portfolio_plots_divs = components( (fig_profile, fig_actions) ) next24hours = [ (time_utils.get_most_recent_hour() + timedelta(hours=i)).strftime("%I:00 %p") for i in range(1, 26) ] return render_flexmeasures_template( "views/portfolio.html", assets=assets, average_prices=average_price_dict, asset_types=represented_asset_types, markets=markets, production_per_asset=production_per_asset, consumption_per_asset=consumption_per_asset, curtailment_per_asset=curtailment_per_asset, shifting_per_asset=shifting_per_asset, profit_loss_flexibility_per_asset=profit_loss_flexibility_per_asset, production_per_asset_type=production_per_asset_type, consumption_per_asset_type=consumption_per_asset_type, curtailment_per_asset_type=curtailment_per_asset_type, shifting_per_asset_type=shifting_per_asset_type, profit_loss_flexibility_per_asset_type=profit_loss_flexibility_per_asset_type, sum_production=sum(production_per_asset_type.values()), sum_consumption=sum(consumption_per_asset_type.values()), sum_curtailment=sum(curtailment_per_asset_type.values()), sum_shifting=sum(shifting_per_asset_type.values()), sum_profit_loss_flexibility=sum( profit_loss_flexibility_per_asset_type.values() ), portfolio_plots_script=portfolio_plots_script, portfolio_plots_divs=portfolio_plots_divs, next24hours=next24hours, alt_stacking=show_summed, )
def portfolio_view(): # noqa: C901 """Portfolio view. By default, this page shows live results (production, consumption and market data) from the user's portfolio. Time windows for which the platform has identified upcoming balancing opportunities are highlighted. The page can also be used to navigate historical results. """ set_time_range_for_session() start = session.get("start_time") end = session.get("end_time") resolution = session.get("resolution") # Get plot perspective perspectives = ["production", "consumption"] default_stack_side = "production" # todo: move to user config setting show_stacked = request.values.get("show_stacked", default_stack_side) perspectives.remove(show_stacked) show_summed: str = perspectives[0] plot_label = f"Stacked {show_stacked} vs aggregated {show_summed}" # Get structure and data assets: List[Asset] = get_assets(order_by_asset_attribute="display_name", order_direction="asc") represented_asset_types, markets, resource_dict = get_structure(assets) for resource_name, resource in resource_dict.items(): resource.load_sensor_data( [Power, Price], start=start, end=end, resolution=resolution, exclude_source_types=["scheduling script"], ) # The resource caches the results ( supply_resources_df_dict, demand_resources_df_dict, production_per_asset_type, consumption_per_asset_type, production_per_asset, consumption_per_asset, ) = get_power_data(resource_dict) price_bdf_dict, average_price_dict = get_price_data(resource_dict) # Pick a perspective for summing and for stacking sum_dict = (demand_resources_df_dict.values() if show_summed == "consumption" else supply_resources_df_dict.values()) power_sum_df = (pd.concat(sum_dict, axis=1).sum(axis=1).to_frame( name="event_value") if sum_dict else pd.DataFrame()) # Create summed plot power_sum_df = data_or_zeroes(power_sum_df, start, end, resolution) x_range = plotting.make_range( pd.date_range(start, end, freq=resolution, closed="left")) fig_profile = plotting.create_graph( power_sum_df, unit="MW", title=plot_label, x_range=x_range, x_label="Time (resolution of %s)" % time_utils.freq_label_to_human_readable_label(resolution), y_label="Power (in MW)", legend_location="top_right", legend_labels=(capitalize(show_summed), None, None), show_y_floats=True, non_negative_only=True, ) fig_profile.plot_height = 450 fig_profile.plot_width = 900 # Create stacked plot stack_dict = (rename_event_value_column_to_resource_name( supply_resources_df_dict).values() if show_summed == "consumption" else rename_event_value_column_to_resource_name( demand_resources_df_dict).values()) df_stacked_data = pd.concat(stack_dict, axis=1) if stack_dict else pd.DataFrame() df_stacked_data = data_or_zeroes(df_stacked_data, start, end, resolution) df_stacked_areas = stack_df(df_stacked_data) num_areas = df_stacked_areas.shape[1] if num_areas <= 2: colors = ["#99d594", "#dddd9d"] else: colors = palettes.brewer["Spectral"][num_areas] df_stacked_data = time_utils.tz_index_naively(df_stacked_data) x_points = np.hstack((df_stacked_data.index[::-1], df_stacked_data.index)) fig_profile.grid.minor_grid_line_color = "#eeeeee" for a, area in enumerate(df_stacked_areas): fig_profile.patch( x_points, df_stacked_areas[area].values, color=colors[a], alpha=0.8, line_color=None, legend=df_stacked_data.columns[a], level="underlay", ) portfolio_plots_script, portfolio_plots_divs = components(fig_profile) # Flexibility numbers and a mocked control action are mocked for demo mode at the moment flex_info = {} if current_app.config.get("FLEXMEASURES_MODE") == "demo": flex_info = mock_flex_info(assets, represented_asset_types) fig_actions = mock_flex_figure(x_range, power_sum_df.index, fig_profile.plot_width) mock_flex_action_in_main_figure(fig_profile) portfolio_plots_script, portfolio_plots_divs = components( (fig_profile, fig_actions)) return render_flexmeasures_template( "views/portfolio.html", assets=assets, average_prices=average_price_dict, asset_types=represented_asset_types, markets=markets, production_per_asset=production_per_asset, consumption_per_asset=consumption_per_asset, production_per_asset_type=production_per_asset_type, consumption_per_asset_type=consumption_per_asset_type, sum_production=sum(production_per_asset_type.values()), sum_consumption=sum(consumption_per_asset_type.values()), flex_info=flex_info, portfolio_plots_script=portfolio_plots_script, portfolio_plots_divs=portfolio_plots_divs, alt_stacking=show_summed, fm_mode=current_app.config.get("FLEXMEASURES_MODE"), )