示例#1
0
    def kappaToAlpha(self, kappaMap, test=False):

        fKappa = fft(kappaMap, axes=[-2, -1])
        fAlpha = self.ftkernels * fKappa
        pixScaleY, pixScaleX = kappaMap.pixshape()
        Ny, Nx = kappaMap.shape

        #retAlpha = (np.fft.ifftshift(enmap.ifft(fAlpha,normalize=False).real)+kappaMap*0.)*pixScaleY*pixScaleX/Nx/Ny
        retAlpha = -(np.fft.ifftshift(
            ifft(fAlpha, axes=[-2, -1], normalize=False).real[::-1]) +
                     kappaMap * 0.) * pixScaleY * pixScaleX / Nx / Ny

        if test:
            newKap = -np.nan_to_num(0.5 * enmap.div(retAlpha))
            thetaMap = kappaMap.posmap()
            thetaModMap = 60. * 180. * (np.sum(thetaMap**2, 0)**0.5) / np.pi
            print "newkappaint ", np.nanmean(newKap[thetaModMap < 10.])

            pl = Plotter()
            pl.plot2d(kappaMap)
            pl.done("output/oldKap.png")
            pl = Plotter()
            pl.plot2d(newKap)
            pl.done("output/newKap.png")
            ratio = np.nan_to_num(newKap / kappaMap)
            print thetaMap.shape

            print ratio[thetaModMap < 5].mean()
            pl = Plotter()
            pl.plot2d(ratio[200:-200, 200:-200])
            pl.done("output/testratio.png")

        return retAlpha
示例#2
0
def fftFromLiteMap(liteMap,applySlepianTaper = False,nresForSlepian=3.0):
    """
    @brief Creates an fft2D object out of a liteMap
    @param liteMap The map whose fft is being taken
    @param applySlepianTaper If True applies the lowest order taper (to minimize edge-leakage)
    @param nresForSlepian If above is True, specifies the resolution of the taeper to use.
    """
    ft = fft2D()
        
    ft.Nx = liteMap.Nx
    ft.Ny = liteMap.Ny
    flTrace.issue("flipper.fftTools",1, "Taking FFT of map with (Ny,Nx)= (%f,%f)"%(ft.Ny,ft.Nx))
    
    ft.pixScaleX = liteMap.pixScaleX 
                
    
    ft.pixScaleY = liteMap.pixScaleY
    
    
    lx =  2*np.pi  * fftfreq( ft.Nx, d = ft.pixScaleX )
    ly =  2*np.pi  * fftfreq( ft.Ny, d = ft.pixScaleY )
    
    ix = np.mod(np.arange(ft.Nx*ft.Ny),ft.Nx)
    # This was dividing ints, so change below needed to maintain same behaviour in python3
    iy = np.array(np.arange(ft.Nx*ft.Ny)/ft.Nx, dtype = int)     
    
    modLMap = np.zeros([ft.Ny,ft.Nx])
    modLMap[iy,ix] = np.sqrt(lx[ix]**2 + ly[iy]**2)
    
    ft.modLMap  =  modLMap
    
    ft.lx = lx
    ft.ly = ly
    ft.ix = ix
    ft.iy = iy
    ft.thetaMap = np.zeros([ft.Ny,ft.Nx])
    ft.thetaMap[iy[:],ix[:]] = np.arctan2(ly[iy[:]],lx[ix[:]])
    ft.thetaMap *=180./np.pi
    
    map = liteMap.data.copy()
    #map = map0.copy()
    #map[:,:] =map0[::-1,:]
    taper = map.copy()*0.0 + 1.0

    if (applySlepianTaper) :
        try:
            path_to_taper = os.path.join(__FLIPPER_DIR__, "tapers", 'taper_Ny%d_Nx%d_Nres%3.1f'%(ft.Ny,ft.Nx,nresForSlepian))
            f = open(path_to_taper)
            taper = pickle.load(f)
            f.close()
        except:
            taper = slepianTaper00(ft.Nx,ft.Ny,nresForSlepian)
            path_to_taper = os.path.join(__FLIPPER_DIR__, "tapers", 'taper_Ny%d_Nx%d_Nres%3.1f'%(ft.Ny,ft.Nx,nresForSlepian))
            f = open(path_to_taper, mode="w")
            pickle.dump(taper,f)
            f.close()
    
    ft.kMap = fftfast.fft(map*taper,axes=[-2,-1])
    del map, modLMap, lx, ly
    return ft
示例#3
0
def fftFromLiteMap(liteMap,applySlepianTaper = False,nresForSlepian=3.0):
    """
    @brief Creates an fft2D object out of a liteMap
    @param liteMap The map whose fft is being taken
    @param applySlepianTaper If True applies the lowest order taper (to minimize edge-leakage)
    @param nresForSlepian If above is True, specifies the resolution of the taeper to use.
    """
    ft = fft2D()
        
    ft.Nx = liteMap.Nx
    ft.Ny = liteMap.Ny
    flTrace.issue("flipper.fftTools",1, "Taking FFT of map with (Ny,Nx)= (%f,%f)"%(ft.Ny,ft.Nx))
    
    ft.pixScaleX = liteMap.pixScaleX 
                
    
    ft.pixScaleY = liteMap.pixScaleY
    
    
    lx =  2*np.pi  * fftfreq( ft.Nx, d = ft.pixScaleX )
    ly =  2*np.pi  * fftfreq( ft.Ny, d = ft.pixScaleY )
    
    ix = np.mod(np.arange(ft.Nx*ft.Ny),ft.Nx)
    iy = np.arange(ft.Nx*ft.Ny)/ft.Nx
    
    modLMap = np.zeros([ft.Ny,ft.Nx])
    modLMap[iy,ix] = np.sqrt(lx[ix]**2 + ly[iy]**2)
    
    ft.modLMap  =  modLMap
    
    ft.lx = lx
    ft.ly = ly
    ft.ix = ix
    ft.iy = iy
    ft.thetaMap = np.zeros([ft.Ny,ft.Nx])
    ft.thetaMap[iy[:],ix[:]] = np.arctan2(ly[iy[:]],lx[ix[:]])
    ft.thetaMap *=180./np.pi
    
    map = liteMap.data.copy()
    #map = map0.copy()
    #map[:,:] =map0[::-1,:]
    taper = map.copy()*0.0 + 1.0

    if (applySlepianTaper) :
        try:
            path_to_taper = os.path.join(__FLIPPER_DIR__, "tapers", 'taper_Ny%d_Nx%d_Nres%3.1f'%(ft.Ny,ft.Nx,nresForSlepian))
            f = open(path_to_taper)
            taper = pickle.load(f)
            f.close()
        except:
            taper = slepianTaper00(ft.Nx,ft.Ny,nresForSlepian)
            path_to_taper = os.path.join(__FLIPPER_DIR__, "tapers", 'taper_Ny%d_Nx%d_Nres%3.1f'%(ft.Ny,ft.Nx,nresForSlepian))
            f = open(path_to_taper, mode="w")
            pickle.dump(taper,f)
            f.close()
    
    ft.kMap = fftfast.fft(map*taper,axes=[-2,-1])
    del map, modLMap, lx, ly
    return ft
示例#4
0
    def __init__(self, imap):

        thetaMap = imap.posmap()
        thetaModSqMap = np.sum(thetaMap**2, 0)

        kernels = thetaMap / thetaModSqMap / np.pi

        self.ftkernels = fft(kernels, axes=[-2, -1])
示例#5
0
def upgradePixelPitch( m, N = 1 ):
    """
    @brief go to finer pixels with fourier interpolation
    @param m a liteMap
    @param N go to 2^N times smaller pixels
    @return the map with smaller pixels
    """
    Ny = m.Ny*2**N
    Nx = m.Nx*2**N
    npix = Ny*Nx

    ft = fftfast.fft(m.data,axes=[-2,-1])
    ftShifted = np.fft.fftshift(ft)
    newFtShifted = np.zeros((Ny, Nx), dtype=np.complex128)

    # From the np.fft.fftshift help:
    # """
    # Shift zero-frequency component to center of spectrum.
    #
    # This function swaps half-spaces for all axes listed (defaults to all).
    # If len(x) is even then the Nyquist component is y[0].
    # """
    #
    # So in the case that we have an odd dimension in our map, we want to put
    # the extra zero at the beginning
    
    if m.Nx % 2 != 0:
        offsetX = (Nx-m.Nx)/2 + 1
    else:
        offsetX = (Nx-m.Nx)/2
    if m.Ny % 2 != 0:
        offsetY = (Ny-m.Ny)/2 + 1
    else:
        offsetY = (Ny-m.Ny)/2
    
    newFtShifted[offsetY:offsetY+m.Ny,offsetX:offsetX+m.Nx] = ftShifted
    del ftShifted
    ftNew = np.fft.ifftshift(newFtShifted)
    del newFtShifted

    # Finally, deconvolve by the pixel window
    mPix = np.copy(np.real(ftNew))
    mPix[:] = 0.0
    mPix[mPix.shape[0]/2-(2**(N-1)):mPix.shape[0]/2+(2**(N-1)),mPix.shape[1]/2-(2**(N-1)):mPix.shape[1]/2+(2**(N-1))] = 1./(2.**N)**2
    ftPix = fftfast.fft(mPix,axes=[-2,-1])
    del mPix
    inds = np.where(ftNew != 0)
    ftNew[inds] /= np.abs(ftPix[inds])
    newData = fftfast.ifft(ftNew,axes=[-2,-1],normalize=True)*(2**N)**2
    del ftNew
    del ftPix

    x0_new,y0_new = m.pixToSky(0,0)
    
    m = m.copy() # don't overwrite original 
    m.wcs.header['NAXIS1'] =  2**N*m.wcs.header['NAXIS1']
    m.wcs.header['NAXIS2'] = 2**N*m.wcs.header['NAXIS2'] 
    m.wcs.header['CDELT1'] = m.wcs.header['CDELT1']/2.**N
    m.wcs.header['CDELT2'] = m.wcs.header['CDELT2']/2.**N
    m.wcs.updateFromHeader()
    
    p_x, p_y = m.skyToPix(x0_new, y0_new)
    
    m.wcs.header['CRPIX1'] = m.wcs.header['CRPIX1'] - p_x
    m.wcs.header['CRPIX2'] = m.wcs.header['CRPIX2'] - p_y
    m.wcs.updateFromHeader()

    mNew = liteMapFromDataAndWCS(np.real(newData), m.wcs)
    mNew.data[:] = newData[:]
    return mNew
示例#6
0
def upgradePixelPitch( m, N = 1 ):
    """
    @brief go to finer pixels with fourier interpolation
    @param m a liteMap
    @param N go to 2^N times smaller pixels
    @return the map with smaller pixels
    """
    Ny = m.Ny*2**N
    Nx = m.Nx*2**N
    npix = Ny*Nx

    ft = fftfast.fft(m.data,axes=[-2,-1])
    ftShifted = np.fft.fftshift(ft)
    newFtShifted = np.zeros((Ny, Nx), dtype=np.complex128)

    # From the np.fft.fftshift help:
    # """
    # Shift zero-frequency component to center of spectrum.
    #
    # This function swaps half-spaces for all axes listed (defaults to all).
    # If len(x) is even then the Nyquist component is y[0].
    # """
    #
    # So in the case that we have an odd dimension in our map, we want to put
    # the extra zero at the beginning
    
    if m.Nx % 2 != 0:
        offsetX = (Nx-m.Nx)/2 + 1
    else:
        offsetX = (Nx-m.Nx)/2
    if m.Ny % 2 != 0:
        offsetY = (Ny-m.Ny)/2 + 1
    else:
        offsetY = (Ny-m.Ny)/2
    
    newFtShifted[offsetY:offsetY+m.Ny,offsetX:offsetX+m.Nx] = ftShifted
    del ftShifted
    ftNew = np.fft.ifftshift(newFtShifted)
    del newFtShifted

    # Finally, deconvolve by the pixel window
    mPix = np.copy(np.real(ftNew))
    mPix[:] = 0.0
    mPix[mPix.shape[0]/2-(2**(N-1)):mPix.shape[0]/2+(2**(N-1)),mPix.shape[1]/2-(2**(N-1)):mPix.shape[1]/2+(2**(N-1))] = 1./(2.**N)**2
    ftPix = fftfast.fft(mPix,axes=[-2,-1])
    del mPix
    inds = np.where(ftNew != 0)
    ftNew[inds] /= np.abs(ftPix[inds])
    newData = fftfast.ifft(ftNew,axes=[-2,-1],normalize=True)*(2**N)**2
    del ftNew
    del ftPix

    x0_new,y0_new = m.pixToSky(0,0)
    
    m = m.copy() # don't overwrite original 
    m.wcs.header['NAXIS1'] =  2**N*m.wcs.header['NAXIS1']
    m.wcs.header['NAXIS2'] = 2**N*m.wcs.header['NAXIS2'] 
    m.wcs.header['CDELT1'] = m.wcs.header['CDELT1']/2.**N
    m.wcs.header['CDELT2'] = m.wcs.header['CDELT2']/2.**N
    m.wcs.updateFromHeader()
    
    p_x, p_y = m.skyToPix(x0_new, y0_new)
    
    m.wcs.header['CRPIX1'] = m.wcs.header['CRPIX1'] - p_x
    m.wcs.header['CRPIX2'] = m.wcs.header['CRPIX2'] - p_y
    m.wcs.updateFromHeader()

    mNew = liteMapFromDataAndWCS(np.real(newData), m.wcs)
    mNew.data[:] = newData[:]
    return mNew
示例#7
0
def NFWMatchedFilterSN(clusterCosmology,log10Moverh,c,z,ells,Nls,kellmax,overdensity=500.,critical=True,atClusterZ=True,arcStamp=100.,pxStamp=0.05,saveId=None,verbose=False,rayleighSigmaArcmin=None,returnKappa=False,winAtLens=None):
    if rayleighSigmaArcmin is not None: assert rayleighSigmaArcmin>=pxStamp
    M = 10.**log10Moverh

    lmap = lm.makeEmptyCEATemplate(raSizeDeg=arcStamp/60., decSizeDeg=arcStamp/60.,pixScaleXarcmin=pxStamp,pixScaleYarcmin=pxStamp)
    kellmin = 2.*np.pi/arcStamp*np.pi/60./180.
    
    xMap,yMap,modRMap,xx,yy = fmaps.getRealAttributes(lmap)
    lxMap,lyMap,modLMap,thetaMap,lx,ly = fmaps.getFTAttributesFromLiteMap(lmap)
    
        
    cc = clusterCosmology

    cmb = False
    if winAtLens is None:
        cmb = True
        comS = cc.results.comoving_radial_distance(cc.cmbZ)*cc.h
        comL = cc.results.comoving_radial_distance(z)*cc.h
        winAtLens = (comS-comL)/comS

    kappaReal, r500 = NFWkappa(cc,M,c,z,modRMap*180.*60./np.pi,winAtLens,overdensity=overdensity,critical=critical,atClusterZ=atClusterZ)
    
    dAz = cc.results.angular_diameter_distance(z) * cc.h
    th500 = r500/dAz
    #fiveth500 = 10.*np.pi/180./60. #5.*th500
    fiveth500 = 5.*th500
    # print "5theta500 " , fiveth500*180.*60./np.pi , " arcminutes"
    # print "maximum theta " , modRMap.max()*180.*60./np.pi, " arcminutes"

    kInt = kappaReal.copy()
    kInt[modRMap>fiveth500] = 0.
    # print "mean kappa inside theta500 " , kInt[modRMap<fiveth500].mean()
    # print "area of th500 disc " , np.pi*fiveth500**2.*(180.*60./np.pi)**2.
    # print "estimated integral " , kInt[modRMap<fiveth500].mean()*np.pi*fiveth500**2.
    k500 = simps(simps(kInt, yy), xx)
    
    if verbose: print "integral of kappa inside disc ",k500
    kappaReal[modRMap>fiveth500] = 0. #### !!!!!!!!! Might not be necessary!
    # if cmb: print z,fiveth500*180.*60./np.pi
    Ukappa = kappaReal/k500


    
    # pl = Plotter()
    # pl.plot2d(Ukappa)
    # pl.done("output/kappa.png")

    ellmax = kellmax
    ellmin = kellmin

    
    
    Uft = fftfast.fft(Ukappa,axes=[-2,-1])

    if rayleighSigmaArcmin is not None:
        Prayleigh = rayleigh(modRMap*180.*60./np.pi,rayleighSigmaArcmin)
        outDir = "/gpfs01/astro/www/msyriac/plots/"
        # io.quickPlot2d(Prayleigh,outDir+"rayleigh.png")
        rayK = fftfast.fft(ifftshift(Prayleigh),axes=[-2,-1])
        rayK /= rayK[modLMap<1.e-3]
        Uft = Uft.copy()*rayK
    
    Upower = np.real(Uft*Uft.conjugate())

    

    # pl = Plotter()
    # pl.plot2d(fftshift(Upower))
    # pl.done("output/upower.png")


    
    Nls[Nls<0.]=0.
    s = splrep(ells,Nls,k=3)
    Nl2d = splev(modLMap,s) 
    
    Nl2d[modLMap<ellmin]=np.inf
    Nl2d[modLMap>ellmax] = np.inf

    area = lmap.Nx*lmap.Ny*lmap.pixScaleX*lmap.pixScaleY
    Upower = Upower *area / (lmap.Nx*lmap.Ny)**2
        
    filter = np.nan_to_num(Upower/Nl2d)
    #filter = np.nan_to_num(1./Nl2d)
    filter[modLMap>ellmax] = 0.
    filter[modLMap<ellmin] = 0.
    # pl = Plotter()
    # pl.plot2d(fftshift(filter))
    # pl.done("output/filter.png")
    # if (cmb): print Upower.sum()
    # if not(cmb) and z>2.5:
    #     bin_edges = np.arange(500,ellmax,100)
    #     binner = bin2D(modLMap, bin_edges)
    #     centers, nl2dells = binner.bin(Nl2d)
    #     centers, upowerells = binner.bin(np.nan_to_num(Upower))
    #     centers, filterells = binner.bin(filter)
    #     from orphics.tools.io import Plotter
    #     pl = Plotter(scaleY='log')
    #     pl.add(centers,upowerells,label="upower")
    #     pl.add(centers,nl2dells,label="noise")
    #     pl.add(centers,filterells,label="filter")
    #     pl.add(ells,Nls,ls="--")
    #     pl.legendOn(loc='upper right')
    #     #pl._ax.set_ylim(0,1e-8)
    #     pl.done("output/filterells.png")
    #     sys.exit()
    
    varinv = filter.sum()
    std = np.sqrt(1./varinv)
    sn = k500/std
    if verbose: print sn

    if saveId is not None:
        np.savetxt("data/"+saveId+"_m"+str(log10Moverh)+"_z"+str(z)+".txt",np.array([log10Moverh,z,1./sn]))

    if returnKappa:
        return sn,fftfast.ifft(Uft,axes=[-2,-1],normalize=True).real*k500
    return sn, k500, std
示例#8
0
import sys

from mpi4py import MPI

Nyorig = int(sys.argv[1])
Nxorig = int(sys.argv[2])
N = int(sys.argv[3])

# MPI set up
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
numcores = comm.Get_size()

nthread_fft = multiprocessing.cpu_count()
print "Number of threads: ", nthread_fft, " on rank ", rank

Ny = Nyorig
Nx = Nxorig

A = np.random.normal(0., 1., (Ny, Nx))

for i in range(1, nthread_fft + 1)[::-1]:
    B = fftfast.fft(A, axes=[-2, -1], flags=['FFTW_MEASURE'], nthread=i)

    st = time.time()
    for j in range(N):
        B = fftfast.fft(A, axes=[-2, -1], nthread=i)
    elapsed = time.time() - st
    print "Enlib: ", '{:.2f}'.format(elapsed * 1000. /
                                     N), " milliseconds for ", i, " threads."