示例#1
0
 def make_data_load(self,
                    data_path: str,
                    dataset_params: Dict,
                    loader_type: str,
                    the_class="default"):
     start_end_params = {}
     # TODO clean up else if blocks
     if loader_type + "_start" in dataset_params:
         start_end_params["start_stamp"] = dataset_params[loader_type +
                                                          "_start"]
     if loader_type + "_end" in dataset_params:
         start_end_params["end_stamp"] = dataset_params[loader_type +
                                                        "_end"]
     if "scaler" in dataset_params:
         start_end_params["scaling"] = scaler_dict[dataset_params["scaler"]]
     if "interpolate" in dataset_params:
         start_end_params["interpolate_param"] = dataset_params[
             "interpolate"]
     if loader_type == "test" and "forecast_test_len" in dataset_params:
         l = CSVDataLoader(data_path, dataset_params["forecast_history"],
                           dataset_params["forecast_test_len"],
                           dataset_params["target_col"],
                           dataset_params["relevant_cols"],
                           **start_end_params)
     elif the_class == "default":
         l = CSVDataLoader(data_path, dataset_params["forecast_history"],
                           dataset_params["forecast_length"],
                           dataset_params["target_col"],
                           dataset_params["relevant_cols"],
                           **start_end_params)
     else:
         # TODO support custom DataLoader
         l = None
     return l
 def setUp(self):
     self.test_data_path = os.path.join(
         os.path.dirname(os.path.abspath(__file__)), "test_data")
     data_base_params = {
         "file_path": os.path.join(self.test_data_path, "keag_small.csv"),
         "forecast_history": 20,
         "forecast_length": 20,
         "relevant_cols": ["cfs", "temp", "precip"],
         "target_col": ["cfs"],
         "interpolate_param": False,
     }
     self.train_loader = CSVDataLoader(
         os.path.join(self.test_data_path, "keag_small.csv"),
         30,
         20,
         target_col=["cfs"],
         relevant_cols=["cfs", "precip", "temp"],
         interpolate_param=False,
     )
     data_base_params["start_stamp"] = 20
     self.test_loader = CSVTestLoader(
         os.path.join(self.test_data_path, "keag_small.csv"), 336,
         **data_base_params)
     self.ae_loader = AEDataloader(
         os.path.join(self.test_data_path, "keag_small.csv"),
         relevant_cols=["cfs", "temp", "precip"],
     )
     data_base_params["end_stamp"] = 220
     self.train_loader2 = CSVDataLoader(**data_base_params)
示例#3
0
    def make_data_load(
            self,
            data_path: str,
            dataset_params: Dict,
            loader_type: str,
            the_class="default"):
        start_end_params = {}
        the_class = dataset_params["class"]
        start_end_params = scaling_function(start_end_params, dataset_params)
        # TODO clean up else if blocks
        if loader_type + "_start" in dataset_params:
            start_end_params["start_stamp"] = dataset_params[loader_type + "_start"]
        if loader_type + "_end" in dataset_params:
            start_end_params["end_stamp"] = dataset_params[loader_type + "_end"]
        if "interpolate" in dataset_params:
            start_end_params["interpolate_param"] = dataset_params["interpolate"]
        if "feature_param" in dataset_params:
            start_end_params["feature_params"] = dataset_params["feature_param"]
            "Feature param put into stuff"
        if "sort_column" in dataset_params:
            start_end_params["sort_column"] = dataset_params["sort_column"]
        if "scaled_cols" in dataset_params:
            start_end_params["scaled_cols"] = dataset_params["scaled_cols"]
        if "no_scale" in dataset_params:
            start_end_params["no_scale"] = dataset_params["no_scale"]

        is_proper_dataloader = loader_type == "test" and the_class == "default"
        if is_proper_dataloader and "forecast_test_len" in dataset_params:
            loader = CSVDataLoader(
                data_path,
                dataset_params["forecast_history"],
                dataset_params["forecast_test_len"],
                dataset_params["target_col"],
                dataset_params["relevant_cols"],
                **start_end_params)
        elif the_class == "default":
            loader = CSVDataLoader(
                data_path,
                dataset_params["forecast_history"],
                dataset_params["forecast_length"],
                dataset_params["target_col"],
                dataset_params["relevant_cols"],
                **start_end_params)
        elif the_class == "AutoEncoder":
            loader = AEDataloader(
                data_path,
                dataset_params["relevant_cols"],
                **start_end_params
            )
        else:
            # TODO support custom DataLoader
            loader = None
        return loader
示例#4
0
 def setUp(self):
     self.model = SimpleTransformer(3, 30, 20)
     self.data_test_path = os.path.join(
         os.path.dirname(
             os.path.abspath(__file__)),
         "test_init",
         "chick_final.csv")
     self.validation_loader = DataLoader(
         CSVDataLoader(
             self.data_test_path,
             forecast_history=30,
             forecast_length=20,
             target_col=['cfs'],
             relevant_cols=[
                 'cfs',
                 'temp',
                 'precip'],
             interpolate_param=False),
         shuffle=False,
         sampler=None,
         batch_sampler=None,
         num_workers=0,
         collate_fn=None,
         pin_memory=False,
         drop_last=False,
         timeout=0,
         worker_init_fn=None)
     self.sequence_size = 30
示例#5
0
    def test_loader_get_gcs_data(self):
        test_loader = CSVDataLoader(
            file_path="gs://task_ts_data/2020-08-17/Afghanistan____.csv",
            forecast_history=14,
            forecast_length=14,
            target_col=["cases"],
            relevant_cols=["cases", "recovered", "active", "deaths"],
            sort_column="date",
            interpolate_param=False,
            gcp_service_key=
            None,  # for CircleCI tests, local test needs key.json
        )

        self.assertEqual(
            test_loader.local_file_path,
            "data/task_ts_data/2020-08-17/Afghanistan____.csv",
        )
示例#6
0
 def make_data_load(self,
                    data_path: str,
                    dataset_params: Dict,
                    loader_type: str,
                    the_class="default"):
     start_end_params = {}
     the_class = dataset_params["class"]
     start_end_params = scaling_function(start_end_params, dataset_params)
     # TODO clean up else if blocks
     if loader_type + "_start" in dataset_params:
         start_end_params["start_stamp"] = dataset_params[loader_type +
                                                          "_start"]
     if loader_type + "_end" in dataset_params:
         start_end_params["end_stamp"] = dataset_params[loader_type +
                                                        "_end"]
     if "interpolate" in dataset_params:
         start_end_params["interpolate_param"] = dataset_params[
             "interpolate"]
     if "feature_param" in dataset_params:
         start_end_params["feature_params"] = dataset_params[
             "feature_param"]
         "Feature param put into stuff"
     if "sort_column" in dataset_params:
         start_end_params["sort_column"] = dataset_params["sort_column"]
     if "scaled_cols" in dataset_params:
         start_end_params["scaled_cols"] = dataset_params["scaled_cols"]
     if "no_scale" in dataset_params:
         start_end_params["no_scale"] = dataset_params["no_scale"]
     if "id_series_col" in dataset_params:
         start_end_params["id_series_col"] = dataset_params["id_series_col"]
     if the_class == "AutoEncoder":
         start_end_params["forecast_history"] = dataset_params[
             "forecast_history"]
         start_end_params["target_col"] = dataset_params["relevant_cols"]
     is_proper_dataloader = loader_type == "test" and the_class == "default"
     if is_proper_dataloader and "forecast_test_len" in dataset_params:
         loader = CSVDataLoader(data_path,
                                dataset_params["forecast_history"],
                                dataset_params["forecast_test_len"],
                                dataset_params["target_col"],
                                dataset_params["relevant_cols"],
                                **start_end_params)
     elif the_class == "default":
         loader = CSVDataLoader(data_path,
                                dataset_params["forecast_history"],
                                dataset_params["forecast_length"],
                                dataset_params["target_col"],
                                dataset_params["relevant_cols"],
                                **start_end_params)
     elif the_class == "AutoEncoder":
         loader = AEDataloader(data_path, dataset_params["relevant_cols"],
                               **start_end_params)
     elif the_class == "TemporalLoader":
         start_end_params = self.__re_add_params__(start_end_params,
                                                   dataset_params,
                                                   data_path)
         label_len = 0
         if "label_len" in dataset_params:
             label_len = dataset_params["label_len"]
         loader = TemporalLoader(dataset_params["temporal_feats"],
                                 start_end_params,
                                 label_len=label_len)
     elif the_class == "SeriesIDLoader":
         start_end_params = self.__re_add_params__(start_end_params,
                                                   dataset_params,
                                                   data_path)
         loader = CSVSeriesIDLoader(dataset_params["series_id_col"],
                                    start_end_params,
                                    dataset_params["return_method"])
     elif the_class == "GeneralClassificationLoader":
         dataset_params["forecast_length"] = 1
         start_end_params = self.__re_add_params__(start_end_params,
                                                   dataset_params,
                                                   data_path)
         start_end_params["sequence_length"] = dataset_params[
             "sequence_length"]
         loader = GeneralClassificationLoader(start_end_params,
                                              dataset_params["n_classes"])
     else:
         # TODO support custom DataLoader
         loader = None
     return loader