示例#1
0
def allocation_helper(df_w_sector, attr, method, v, download_FBA_if_missing):
    """
    Function to help allocate activity names using secondary df
    :param df_w_sector: df, includes sector columns
    :param attr: dictionary, attribute data from method yaml for activity set
    :param method: dictionary, FBS method yaml
    :param v: dictionary, the datasource parameters
    :param download_FBA_if_missing: bool, indicate if missing FBAs
       should be downloaded from Data Commons or run locally
    :return: df, with modified fba allocation values
    """
    from flowsa.validation import compare_df_units

    # add parameters to dictionary if exist in method yaml
    fba_dict = {}
    if 'helper_flow' in attr:
        fba_dict['flowname_subset'] = attr['helper_flow']
    if 'clean_helper_fba' in attr:
        fba_dict['clean_fba'] = attr['clean_helper_fba']
    if 'clean_helper_fba_wsec' in attr:
        fba_dict['clean_fba_w_sec'] = attr['clean_helper_fba_wsec']

    # load the allocation FBA
    helper_allocation = \
        load_map_clean_fba(method, attr, fba_sourcename=attr['helper_source'],
                           df_year=attr['helper_source_year'],
                           flowclass=attr['helper_source_class'],
                           geoscale_from=attr['helper_from_scale'],
                           geoscale_to=v['geoscale_to_use'],
                           download_FBA_if_missing=download_FBA_if_missing,
                           **fba_dict)

    # run sector disagg to capture any missing lower level naics
    helper_allocation = sector_disaggregation(helper_allocation)

    # generalize activity field names to enable link to water withdrawal table
    helper_allocation = collapse_activity_fields(helper_allocation)
    # drop any rows not mapped
    helper_allocation = \
        helper_allocation[helper_allocation['Sector'].notnull()]
    # drop columns
    helper_allocation = \
        helper_allocation.drop(columns=['Activity', 'Min', 'Max'])

    # rename column
    helper_allocation = \
        helper_allocation.rename(columns={"FlowAmount": 'HelperFlow'})

    # determine the df_w_sector column to merge on
    df_w_sector = replace_strings_with_NoneType(df_w_sector)
    sec_consumed_list = \
        df_w_sector['SectorConsumedBy'].drop_duplicates().values.tolist()
    sec_produced_list = \
        df_w_sector['SectorProducedBy'].drop_duplicates().values.tolist()
    # if a sector field column is not all 'none', that is the column to merge
    if all(v is None for v in sec_consumed_list):
        sector_col_to_merge = 'SectorProducedBy'
    elif all(v is None for v in sec_produced_list):
        sector_col_to_merge = 'SectorConsumedBy'
    else:
        log.error('There is not a clear sector column to base '
                  'merge with helper allocation dataset')

    # merge allocation df with helper df based on sectors,
    # depending on geo scales of dfs
    if (attr['helper_from_scale'] == 'state') and \
            (attr['allocation_from_scale'] == 'county'):
        helper_allocation.loc[:, 'Location_tmp'] = \
            helper_allocation['Location'].apply(lambda x: x[0:2])
        df_w_sector.loc[:, 'Location_tmp'] = \
            df_w_sector['Location'].apply(lambda x: x[0:2])
        # merge_columns.append('Location_tmp')
        compare_df_units(df_w_sector, helper_allocation)
        modified_fba_allocation =\
            df_w_sector.merge(
                helper_allocation[['Location_tmp', 'Sector', 'HelperFlow']],
                how='left',
                left_on=['Location_tmp', sector_col_to_merge],
                right_on=['Location_tmp', 'Sector'])
        modified_fba_allocation = \
            modified_fba_allocation.drop(columns=['Location_tmp'])
    elif (attr['helper_from_scale'] == 'national') and \
            (attr['allocation_from_scale'] != 'national'):
        compare_df_units(df_w_sector, helper_allocation)
        modified_fba_allocation = \
            df_w_sector.merge(helper_allocation[['Sector', 'HelperFlow']],
                              how='left',
                              left_on=[sector_col_to_merge],
                              right_on=['Sector'])
    else:

        compare_df_units(df_w_sector, helper_allocation)
        modified_fba_allocation =\
            df_w_sector.merge(
                helper_allocation[['Location', 'Sector', 'HelperFlow']],
                left_on=['Location', sector_col_to_merge],
                right_on=['Location', 'Sector'],
                how='left')
        # load bea codes that sub for naics
        bea = return_bea_codes_used_as_naics()
        # replace sector column and helperflow value if the sector column to
        # merge is in the bea list to prevent dropped data
        modified_fba_allocation['Sector'] = \
            np.where(modified_fba_allocation[sector_col_to_merge].isin(bea),
                     modified_fba_allocation[sector_col_to_merge],
                     modified_fba_allocation['Sector'])
        modified_fba_allocation['HelperFlow'] = \
            np.where(modified_fba_allocation[sector_col_to_merge].isin(bea),
                     modified_fba_allocation['FlowAmount'],
                     modified_fba_allocation['HelperFlow'])

    # modify flow amounts using helper data
    if 'multiplication' in attr['helper_method']:
        # if missing values (na or 0), replace with national level values
        replacement_values =\
            helper_allocation[helper_allocation['Location'] ==
                              US_FIPS].reset_index(drop=True)
        replacement_values = \
            replacement_values.rename(
                columns={"HelperFlow": 'ReplacementValue'})
        compare_df_units(modified_fba_allocation, replacement_values)
        modified_fba_allocation = modified_fba_allocation.merge(
            replacement_values[['Sector', 'ReplacementValue']], how='left')
        modified_fba_allocation.loc[:, 'HelperFlow'] = \
            modified_fba_allocation['HelperFlow'].fillna(
            modified_fba_allocation['ReplacementValue'])
        modified_fba_allocation.loc[:, 'HelperFlow'] =\
            np.where(modified_fba_allocation['HelperFlow'] == 0,
                     modified_fba_allocation['ReplacementValue'],
                     modified_fba_allocation['HelperFlow'])

        # replace non-existent helper flow values with a 0,
        # so after multiplying, don't have incorrect value associated with
        # new unit
        modified_fba_allocation['HelperFlow'] =\
            modified_fba_allocation['HelperFlow'].fillna(value=0)
        modified_fba_allocation.loc[:, 'FlowAmount'] = \
            modified_fba_allocation['FlowAmount'] * \
            modified_fba_allocation['HelperFlow']
        # drop columns
        modified_fba_allocation =\
            modified_fba_allocation.drop(
                columns=["HelperFlow", 'ReplacementValue', 'Sector'])

    elif attr['helper_method'] == 'proportional':
        modified_fba_allocation =\
            proportional_allocation_by_location_and_activity(
                modified_fba_allocation, sector_col_to_merge)
        modified_fba_allocation['FlowAmountRatio'] =\
            modified_fba_allocation['FlowAmountRatio'].fillna(0)
        modified_fba_allocation.loc[:, 'FlowAmount'] = \
            modified_fba_allocation['FlowAmount'] * \
            modified_fba_allocation['FlowAmountRatio']
        modified_fba_allocation =\
            modified_fba_allocation.drop(
                columns=['FlowAmountRatio', 'HelperFlow', 'Sector'])

    elif attr['helper_method'] == 'proportional-flagged':
        # calculate denominators based on activity and 'flagged' column
        modified_fba_allocation =\
            modified_fba_allocation.assign(
                Denominator=modified_fba_allocation.groupby(
                    ['FlowName', 'ActivityConsumedBy', 'Location',
                     'disaggregate_flag'])['HelperFlow'].transform('sum'))
        modified_fba_allocation = modified_fba_allocation.assign(
            FlowAmountRatio=modified_fba_allocation['HelperFlow'] /
            modified_fba_allocation['Denominator'])
        modified_fba_allocation =\
            modified_fba_allocation.assign(
                FlowAmount=modified_fba_allocation['FlowAmount'] *
                           modified_fba_allocation['FlowAmountRatio'])
        modified_fba_allocation =\
            modified_fba_allocation.drop(
                columns=['disaggregate_flag', 'Sector', 'HelperFlow',
                         'Denominator', 'FlowAmountRatio'])
        # run sector aggregation
        modified_fba_allocation = \
            sector_aggregation(modified_fba_allocation,
                               fba_wsec_default_grouping_fields)

    # drop rows of 0
    modified_fba_allocation =\
        modified_fba_allocation[
            modified_fba_allocation['FlowAmount'] != 0].reset_index(drop=True)

    modified_fba_allocation.loc[modified_fba_allocation['Unit'] ==
                                'gal/employee', 'Unit'] = 'gal'

    # option to scale up fba values
    if 'scaled' in attr['helper_method']:
        log.info("Scaling %s to FBA values", attr['helper_source'])
        modified_fba_allocation = \
            dynamically_import_fxn(
                attr['allocation_source'], attr["scale_helper_results"])(
                modified_fba_allocation, attr,
                download_FBA_if_missing=download_FBA_if_missing)
    return modified_fba_allocation
示例#2
0
def disaggregate_cropland(fba_w_sector, attr, method, year, sector_column):
    """
    In the event there are 4 (or 5) digit naics for cropland
    at the county level, use state level harvested cropland to
    create ratios
    :param fba_w_sector: df, CoA cropland data, FBA format with sector columns
    :param attr: dictionary, attribute data from method yaml for activity set
    :param year: str, year of data
    :param sector_column: str, the sector column on which to make
                          df modifications (SectorProducedBy or SectorConsumedBy)
    :param attr: dictionary, attribute data from method yaml for activity set
    :return: df, CoA cropland data disaggregated
    """

    # tmp drop NoneTypes
    fba_w_sector = replace_NoneType_with_empty_cells(fba_w_sector)

    # drop pastureland data
    crop = fba_w_sector.loc[fba_w_sector[sector_column].apply(lambda x: x[0:3])
                            != '112'].reset_index(drop=True)
    # drop sectors < 4 digits
    crop = crop[crop[sector_column].apply(lambda x: len(x) > 3)].reset_index(
        drop=True)
    # create tmp location
    crop = crop.assign(Location_tmp=crop['Location'].apply(lambda x: x[0:2]))

    # load the relevant state level harvested cropland by naics
    naics = load_fba_w_standardized_units(datasource="USDA_CoA_Cropland_NAICS",
                                          year=year,
                                          flowclass='Land')
    # subset the harvested cropland by naics
    naics = naics[naics['FlowName'] ==
                  'AG LAND, CROPLAND, HARVESTED'].reset_index(drop=True)
    # drop the activities that include '&'
    naics = naics[~naics['ActivityConsumedBy'].str.contains('&')].reset_index(
        drop=True)
    # add sectors
    naics = add_sectors_to_flowbyactivity(
        naics, sectorsourcename=method['target_sector_source'])
    # estimate suppressed data by equally allocating parent to child naics
    naics = estimate_suppressed_data(naics, 'SectorConsumedBy', 3,
                                     'USDA_CoA_Cropland_NAICS')
    # add missing fbs fields
    naics = clean_df(naics, flow_by_sector_fields, fbs_fill_na_dict)

    # aggregate sectors to create any missing naics levels
    group_cols = fbs_default_grouping_fields
    # group_cols = [e for e in group_cols if e not in ('SectorProducedBy', 'SectorConsumedBy')]
    # group_cols.append(sector_column)
    naics2 = sector_aggregation(naics, group_cols)
    # add missing naics5/6 when only one naics5/6 associated with a naics4
    naics3 = sector_disaggregation(naics2)
    # drop rows where FlowAmount 0
    # naics3 = naics3[~((naics3['SectorProducedBy'] == '') & (naics3['SectorConsumedBy'] == ''))]
    naics3 = naics3.loc[naics3['FlowAmount'] != 0]
    # create ratios
    naics4 = sector_ratios(naics3, sector_column)
    # create temporary sector column to match the two dfs on
    naics4 = naics4.assign(
        Location_tmp=naics4['Location'].apply(lambda x: x[0:2]))
    # tmp drop Nonetypes
    naics4 = replace_NoneType_with_empty_cells(naics4)

    # check units in prep for merge
    compare_df_units(crop, naics4)
    # for loop through naics lengths to determine naics 4 and 5 digits to disaggregate
    for i in range(4, 6):
        # subset df to sectors with length = i and length = i + 1
        crop_subset = crop.loc[crop[sector_column].apply(
            lambda x: i + 1 >= len(x) >= i)]
        crop_subset = crop_subset.assign(
            Sector_tmp=crop_subset[sector_column].apply(lambda x: x[0:i]))
        # if duplicates drop all rows
        df = crop_subset.drop_duplicates(subset=['Location', 'Sector_tmp'],
                                         keep=False).reset_index(drop=True)
        # drop sector temp column
        df = df.drop(columns=["Sector_tmp"])
        # subset df to keep the sectors of length i
        df_subset = df.loc[df[sector_column].apply(lambda x: len(x) == i)]
        # subset the naics df where naics length is i + 1
        naics_subset = \
            naics4.loc[naics4[sector_column].apply(lambda x:
                                                   len(x) == i + 1)].reset_index(drop=True)
        naics_subset = naics_subset.assign(
            Sector_tmp=naics_subset[sector_column].apply(lambda x: x[0:i]))
        # merge the two df based on locations
        df_subset = pd.merge(df_subset,
                             naics_subset[[
                                 sector_column, 'FlowAmountRatio',
                                 'Sector_tmp', 'Location_tmp'
                             ]],
                             how='left',
                             left_on=[sector_column, 'Location_tmp'],
                             right_on=['Sector_tmp', 'Location_tmp'])
        # create flow amounts for the new NAICS based on the flow ratio
        df_subset.loc[:, 'FlowAmount'] = df_subset['FlowAmount'] * df_subset[
            'FlowAmountRatio']
        # drop rows of 0 and na
        df_subset = df_subset[df_subset['FlowAmount'] != 0]
        df_subset = df_subset[~df_subset['FlowAmount'].isna()].reset_index(
            drop=True)
        # drop columns
        df_subset = df_subset.drop(
            columns=[sector_column + '_x', 'FlowAmountRatio', 'Sector_tmp'])
        # rename columns
        df_subset = df_subset.rename(
            columns={sector_column + '_y': sector_column})
        # tmp drop Nonetypes
        df_subset = replace_NoneType_with_empty_cells(df_subset)
        # add new rows of data to crop df
        crop = pd.concat([crop, df_subset], sort=True).reset_index(drop=True)

    # clean up df
    crop = crop.drop(columns=['Location_tmp'])

    # equally allocate any further missing naics
    crop = allocate_dropped_sector_data(crop, 'NAICS_6')

    # pasture data
    pasture = \
        fba_w_sector.loc[fba_w_sector[sector_column].apply(lambda x:
                                                           x[0:3]) == '112'].reset_index(drop=True)
    # concat crop and pasture
    fba_w_sector = pd.concat([pasture, crop], sort=True).reset_index(drop=True)

    # fill empty cells with NoneType
    fba_w_sector = replace_strings_with_NoneType(fba_w_sector)

    return fba_w_sector
示例#3
0
def main(method_name):
    """
    Creates a flowbysector dataset
    :param method_name: Name of method corresponding to flowbysector method yaml name
    :return: flowbysector
    """

    log.info("Initiating flowbysector creation for " + method_name)
    # call on method
    method = load_method(method_name)
    # create dictionary of data and allocation datasets
    fb = method['source_names']
    # Create empty list for storing fbs files
    fbs_list = []
    for k, v in fb.items():
        # pull fba data for allocation
        flows = load_source_dataframe(k, v)

        if v['data_format'] == 'FBA':
            # ensure correct datatypes and that all fields exist
            flows = clean_df(flows,
                             flow_by_activity_fields,
                             fba_fill_na_dict,
                             drop_description=False)

            # clean up fba, if specified in yaml
            if v["clean_fba_df_fxn"] != 'None':
                log.info("Cleaning up " + k + " FlowByActivity")
                flows = getattr(sys.modules[__name__],
                                v["clean_fba_df_fxn"])(flows)

            # if activity_sets are specified in a file, call them here
            if 'activity_set_file' in v:
                aset_names = pd.read_csv(flowbysectoractivitysetspath +
                                         v['activity_set_file'],
                                         dtype=str)

            # create dictionary of allocation datasets for different activities
            activities = v['activity_sets']
            # subset activity data and allocate to sector
            for aset, attr in activities.items():
                # subset by named activities
                if 'activity_set_file' in v:
                    names = aset_names[aset_names['activity_set'] ==
                                       aset]['name']
                else:
                    names = attr['names']

                log.info("Preparing to handle subset of flownames " +
                         ', '.join(map(str, names)) + " in " + k)
                # subset fba data by activity
                flows_subset = flows[
                    (flows[fba_activity_fields[0]].isin(names)) |
                    (flows[fba_activity_fields[1]].isin(names))].reset_index(
                        drop=True)

                # extract relevant geoscale data or aggregate existing data
                log.info("Subsetting/aggregating dataframe to " +
                         attr['allocation_from_scale'] + " geoscale")
                flows_subset_geo = subset_df_by_geoscale(
                    flows_subset, v['geoscale_to_use'],
                    attr['allocation_from_scale'])

                # Add sectors to df activity, depending on level of specified sector aggregation
                log.info("Adding sectors to " + k)
                flow_subset_wsec = add_sectors_to_flowbyactivity(
                    flows_subset_geo,
                    sectorsourcename=method['target_sector_source'],
                    allocationmethod=attr['allocation_method'])
                # clean up fba with sectors, if specified in yaml
                if v["clean_fba_w_sec_df_fxn"] != 'None':
                    log.info("Cleaning up " + k +
                             " FlowByActivity with sectors")
                    flow_subset_wsec = getattr(sys.modules[__name__],
                                               v["clean_fba_w_sec_df_fxn"])(
                                                   flow_subset_wsec, attr=attr)

                # map df to elementary flows
                log.info("Mapping flows in " + k +
                         ' to federal elementary flow list')
                if 'fedefl_mapping' in v:
                    mapping_files = v['fedefl_mapping']
                else:
                    mapping_files = k

                flow_subset_mapped = map_elementary_flows(
                    flow_subset_wsec, mapping_files)

                # clean up mapped fba with sectors, if specified in yaml
                if "clean_mapped_fba_w_sec_df_fxn" in v:
                    log.info("Cleaning up " + k +
                             " FlowByActivity with sectors")
                    flow_subset_mapped = getattr(
                        sys.modules[__name__],
                        v["clean_mapped_fba_w_sec_df_fxn"])(flow_subset_mapped,
                                                            attr, method)

                # if allocation method is "direct", then no need to create alloc ratios, else need to use allocation
                # dataframe to create sector allocation ratios
                if attr['allocation_method'] == 'direct':
                    log.info('Directly assigning ' +
                             ', '.join(map(str, names)) + ' to sectors')
                    fbs = flow_subset_mapped.copy()
                    # for each activity, if activities are not sector like, check that there is no data loss
                    if load_source_catalog(
                    )[k]['sector-like_activities'] is False:
                        activity_list = []
                        for n in names:
                            log.info('Checking for ' + n + ' at ' +
                                     method['target_sector_level'])
                            fbs_subset = fbs[(
                                (fbs[fba_activity_fields[0]] == n) &
                                (fbs[fba_activity_fields[1]] == n)) |
                                             (fbs[fba_activity_fields[0]] == n)
                                             |
                                             (fbs[fba_activity_fields[1]] == n
                                              )].reset_index(drop=True)
                            fbs_subset = check_if_losing_sector_data(
                                fbs_subset, method['target_sector_level'])
                            activity_list.append(fbs_subset)
                        fbs = pd.concat(activity_list, ignore_index=True)

                # if allocation method for an activity set requires a specific function due to the complicated nature
                # of the allocation, call on function here
                elif attr['allocation_method'] == 'allocation_function':
                    log.info(
                        'Calling on function specified in method yaml to allocate '
                        + ', '.join(map(str, names)) + ' to sectors')
                    fbs = getattr(sys.modules[__name__],
                                  attr['allocation_source'])(
                                      flow_subset_mapped, attr, fbs_list)

                else:
                    # determine appropriate allocation dataset
                    log.info("Loading allocation flowbyactivity " +
                             attr['allocation_source'] + " for year " +
                             str(attr['allocation_source_year']))
                    fba_allocation = flowsa.getFlowByActivity(
                        flowclass=[attr['allocation_source_class']],
                        datasource=attr['allocation_source'],
                        years=[attr['allocation_source_year']
                               ]).reset_index(drop=True)

                    # clean df and harmonize unites
                    fba_allocation = clean_df(fba_allocation,
                                              flow_by_activity_fields,
                                              fba_fill_na_dict)
                    fba_allocation = harmonize_units(fba_allocation)

                    # check if allocation data exists at specified geoscale to use
                    log.info("Checking if allocation data exists at the " +
                             attr['allocation_from_scale'] + " level")
                    check_if_data_exists_at_geoscale(
                        fba_allocation, attr['allocation_from_scale'])

                    # aggregate geographically to the scale of the flowbyactivty source, if necessary
                    fba_allocation = subset_df_by_geoscale(
                        fba_allocation, attr['allocation_from_scale'],
                        v['geoscale_to_use'])

                    # subset based on yaml settings
                    if attr['allocation_flow'] != 'None':
                        fba_allocation = fba_allocation.loc[
                            fba_allocation['FlowName'].isin(
                                attr['allocation_flow'])]
                    if attr['allocation_compartment'] != 'None':
                        fba_allocation = fba_allocation.loc[
                            fba_allocation['Compartment'].isin(
                                attr['allocation_compartment'])]

                    # cleanup the fba allocation df, if necessary
                    if 'clean_allocation_fba' in attr:
                        log.info("Cleaning " + attr['allocation_source'])
                        fba_allocation = getattr(sys.modules[__name__],
                                                 attr["clean_allocation_fba"])(
                                                     fba_allocation, attr=attr)
                    # reset index
                    fba_allocation = fba_allocation.reset_index(drop=True)

                    # assign sector to allocation dataset
                    log.info("Adding sectors to " + attr['allocation_source'])
                    fba_allocation_wsec = add_sectors_to_flowbyactivity(
                        fba_allocation,
                        sectorsourcename=method['target_sector_source'])

                    # call on fxn to further clean up/disaggregate the fba allocation data, if exists
                    if 'clean_allocation_fba_w_sec' in attr:
                        log.info("Further disaggregating sectors in " +
                                 attr['allocation_source'])
                        fba_allocation_wsec = getattr(
                            sys.modules[__name__],
                            attr["clean_allocation_fba_w_sec"])(
                                fba_allocation_wsec, attr=attr, method=method)

                    # subset fba datasets to only keep the sectors associated with activity subset
                    log.info("Subsetting " + attr['allocation_source'] +
                             " for sectors in " + k)
                    fba_allocation_subset = get_fba_allocation_subset(
                        fba_allocation_wsec,
                        k,
                        names,
                        flowSubsetMapped=flow_subset_mapped,
                        allocMethod=attr['allocation_method'])

                    # if there is an allocation helper dataset, modify allocation df
                    if attr['allocation_helper'] == 'yes':
                        log.info(
                            "Using the specified allocation help for subset of "
                            + attr['allocation_source'])
                        fba_allocation_subset = allocation_helper(
                            fba_allocation_subset, attr, method, v)

                    # create flow allocation ratios for each activity
                    # if load_source_catalog()[k]['sector-like_activities']
                    flow_alloc_list = []
                    group_cols = fba_mapped_default_grouping_fields
                    group_cols = [
                        e for e in group_cols
                        if e not in ('ActivityProducedBy',
                                     'ActivityConsumedBy')
                    ]
                    for n in names:
                        log.info("Creating allocation ratios for " + n)
                        fba_allocation_subset_2 = get_fba_allocation_subset(
                            fba_allocation_subset,
                            k, [n],
                            flowSubsetMapped=flow_subset_mapped,
                            allocMethod=attr['allocation_method'])
                        if len(fba_allocation_subset_2) == 0:
                            log.info("No data found to allocate " + n)
                        else:
                            flow_alloc = allocate_by_sector(
                                fba_allocation_subset_2,
                                k,
                                attr['allocation_source'],
                                attr['allocation_method'],
                                group_cols,
                                flowSubsetMapped=flow_subset_mapped)
                            flow_alloc = flow_alloc.assign(FBA_Activity=n)
                            flow_alloc_list.append(flow_alloc)
                    flow_allocation = pd.concat(flow_alloc_list,
                                                ignore_index=True)

                    # generalize activity field names to enable link to main fba source
                    log.info("Generalizing activity columns in subset of " +
                             attr['allocation_source'])
                    flow_allocation = collapse_activity_fields(flow_allocation)

                    # check for issues with allocation ratios
                    check_allocation_ratios(flow_allocation, aset, k,
                                            method_name)

                    # create list of sectors in the flow allocation df, drop any rows of data in the flow df that \
                    # aren't in list
                    sector_list = flow_allocation['Sector'].unique().tolist()

                    # subset fba allocation table to the values in the activity list, based on overlapping sectors
                    flow_subset_mapped = flow_subset_mapped.loc[
                        (flow_subset_mapped[fbs_activity_fields[0]].
                         isin(sector_list)) |
                        (flow_subset_mapped[fbs_activity_fields[1]].
                         isin(sector_list))]

                    # check if fba and allocation dfs have the same LocationSystem
                    log.info(
                        "Checking if flowbyactivity and allocation dataframes use the same location systems"
                    )
                    check_if_location_systems_match(flow_subset_mapped,
                                                    flow_allocation)

                    # merge fba df w/flow allocation dataset
                    log.info("Merge " + k + " and subset of " +
                             attr['allocation_source'])
                    fbs = flow_subset_mapped.merge(
                        flow_allocation[[
                            'Location', 'Sector', 'FlowAmountRatio',
                            'FBA_Activity'
                        ]],
                        left_on=[
                            'Location', 'SectorProducedBy',
                            'ActivityProducedBy'
                        ],
                        right_on=['Location', 'Sector', 'FBA_Activity'],
                        how='left')

                    fbs = fbs.merge(
                        flow_allocation[[
                            'Location', 'Sector', 'FlowAmountRatio',
                            'FBA_Activity'
                        ]],
                        left_on=[
                            'Location', 'SectorConsumedBy',
                            'ActivityConsumedBy'
                        ],
                        right_on=['Location', 'Sector', 'FBA_Activity'],
                        how='left')

                    # merge the flowamount columns
                    fbs.loc[:, 'FlowAmountRatio'] = fbs[
                        'FlowAmountRatio_x'].fillna(fbs['FlowAmountRatio_y'])
                    # fill null rows with 0 because no allocation info
                    fbs['FlowAmountRatio'] = fbs['FlowAmountRatio'].fillna(0)

                    # check if fba and alloc dfs have data for same geoscales - comment back in after address the 'todo'
                    # log.info("Checking if flowbyactivity and allocation dataframes have data at the same locations")
                    # check_if_data_exists_for_same_geoscales(fbs, k, attr['names'])

                    # drop rows where there is no allocation data
                    fbs = fbs.dropna(subset=['Sector_x', 'Sector_y'],
                                     how='all').reset_index()

                    # calculate flow amounts for each sector
                    log.info("Calculating new flow amounts using flow ratios")
                    fbs.loc[:, 'FlowAmount'] = fbs['FlowAmount'] * fbs[
                        'FlowAmountRatio']

                    # drop columns
                    log.info("Cleaning up new flow by sector")
                    fbs = fbs.drop(columns=[
                        'Sector_x', 'FlowAmountRatio_x', 'Sector_y',
                        'FlowAmountRatio_y', 'FlowAmountRatio',
                        'FBA_Activity_x', 'FBA_Activity_y'
                    ])

                # drop rows where flowamount = 0 (although this includes dropping suppressed data)
                fbs = fbs[fbs['FlowAmount'] != 0].reset_index(drop=True)

                # define grouping columns dependent on sectors being activity-like or not
                if load_source_catalog()[k]['sector-like_activities'] is False:
                    groupingcols = fbs_grouping_fields_w_activities
                    groupingdict = flow_by_sector_fields_w_activity
                else:
                    groupingcols = fbs_default_grouping_fields
                    groupingdict = flow_by_sector_fields

                # clean df
                fbs = clean_df(fbs, groupingdict, fbs_fill_na_dict)

                # aggregate df geographically, if necessary
                # todo: replace with fxn return_from_scale
                log.info("Aggregating flowbysector to " +
                         method['target_geoscale'] + " level")
                if fips_number_key[v['geoscale_to_use']] < fips_number_key[
                        attr['allocation_from_scale']]:
                    from_scale = v['geoscale_to_use']
                else:
                    from_scale = attr['allocation_from_scale']

                to_scale = method['target_geoscale']

                fbs_geo_agg = agg_by_geoscale(fbs, from_scale, to_scale,
                                              groupingcols)

                # aggregate data to every sector level
                log.info("Aggregating flowbysector to all sector levels")
                fbs_sec_agg = sector_aggregation(fbs_geo_agg, groupingcols)
                # add missing naics5/6 when only one naics5/6 associated with a naics4
                fbs_agg = sector_disaggregation(fbs_sec_agg, groupingdict)

                # check if any sector information is lost before reaching the target sector length, if so,
                # allocate values equally to disaggregated sectors
                log.info('Checking for data at ' +
                         method['target_sector_level'])
                fbs_agg_2 = check_if_losing_sector_data(
                    fbs_agg, method['target_sector_level'])

                # compare flowbysector with flowbyactivity
                # todo: modify fxn to work if activities are sector like in df being allocated
                if load_source_catalog()[k]['sector-like_activities'] is False:
                    check_for_differences_between_fba_load_and_fbs_output(
                        flow_subset_mapped, fbs_agg_2, aset, k, method_name)

                # return sector level specified in method yaml
                # load the crosswalk linking sector lengths
                sector_list = get_sector_list(method['target_sector_level'])

                # subset df, necessary because not all of the sectors are NAICS and can get duplicate rows
                fbs_1 = fbs_agg_2.loc[
                    (fbs_agg_2[fbs_activity_fields[0]].isin(sector_list))
                    & (fbs_agg_2[fbs_activity_fields[1]].isin(sector_list)
                       )].reset_index(drop=True)
                fbs_2 = fbs_agg_2.loc[
                    (fbs_agg_2[fbs_activity_fields[0]].isin(sector_list)) &
                    (fbs_agg_2[fbs_activity_fields[1]].isnull())].reset_index(
                        drop=True)
                fbs_3 = fbs_agg_2.loc[
                    (fbs_agg_2[fbs_activity_fields[0]].isnull())
                    & (fbs_agg_2[fbs_activity_fields[1]].isin(sector_list)
                       )].reset_index(drop=True)
                fbs_sector_subset = pd.concat([fbs_1, fbs_2, fbs_3])

                # drop activity columns
                fbs_sector_subset = fbs_sector_subset.drop(
                    ['ActivityProducedBy', 'ActivityConsumedBy'],
                    axis=1,
                    errors='ignore')

                # save comparison of FBA total to FBS total for an activity set
                compare_fba_load_and_fbs_output_totals(flows_subset_geo,
                                                       fbs_sector_subset, aset,
                                                       k, method_name, attr,
                                                       method, mapping_files)

                log.info(
                    "Completed flowbysector for activity subset with flows " +
                    ', '.join(map(str, names)))
                fbs_list.append(fbs_sector_subset)
        else:
            # if the loaded flow dt is already in FBS format, append directly to list of FBS
            log.info("Append " + k + " to FBS list")
            # ensure correct field datatypes and add any missing fields
            flows = clean_df(flows, flow_by_sector_fields, fbs_fill_na_dict)
            fbs_list.append(flows)
    # create single df of all activities
    log.info("Concat data for all activities")
    fbss = pd.concat(fbs_list, ignore_index=True, sort=False)
    log.info("Clean final dataframe")
    # aggregate df as activities might have data for the same specified sector length
    fbss = clean_df(fbss, flow_by_sector_fields, fbs_fill_na_dict)
    fbss = aggregator(fbss, fbs_default_grouping_fields)
    # sort df
    log.info("Sort and store dataframe")
    # add missing fields, ensure correct data type, reorder columns
    fbss = fbss.sort_values(
        ['SectorProducedBy', 'SectorConsumedBy', 'Flowable',
         'Context']).reset_index(drop=True)
    # save parquet file
    store_flowbysector(fbss, method_name)
示例#4
0
def disaggregate_cropland(fba_w_sector, attr):
    """
    In the event there are 4 (or 5) digit naics for cropland at the county level, use state level harvested cropland to
    create ratios
    :param fba_w_sector:
    :param attr:
    :return:
    """

    import flowsa
    from flowsa.flowbyfunctions import generalize_activity_field_names, sector_aggregation,\
        fbs_default_grouping_fields, clean_df, fba_fill_na_dict, add_missing_flow_by_fields
    from flowsa.mapping import add_sectors_to_flowbyactivity

    # drop pastureland data
    crop = fba_w_sector.loc[fba_w_sector['Sector'].apply(lambda x: str(x[0:3]))
                            != '112'].reset_index(drop=True)
    # drop sectors < 4 digits
    crop = crop[crop['Sector'].apply(lambda x: len(x) > 3)].reset_index(
        drop=True)
    # create tmp location
    crop.loc[:, 'Location_tmp'] = crop['Location'].apply(lambda x: str(x[0:2]))

    # load the relevant state level harvested cropland by naics
    naics_load = flowsa.getFlowByActivity(
        flowclass=['Land'],
        years=[attr['allocation_source_year']],
        datasource="USDA_CoA_Cropland_NAICS").reset_index(drop=True)
    # clean df
    naics = clean_df(naics_load, flow_by_activity_fields, fba_fill_na_dict)
    # subset the harvested cropland by naics
    naics = naics[naics['FlowName'] ==
                  'AG LAND, CROPLAND, HARVESTED'].reset_index(drop=True)
    # add sectors
    naics = add_sectors_to_flowbyactivity(naics,
                                          sectorsourcename='NAICS_2012_Code',
                                          levelofSectoragg='agg')
    # add missing fbs fields
    naics = add_missing_flow_by_fields(naics, flow_by_sector_fields)

    # aggregate sectors to create any missing naics levels
    naics = sector_aggregation(naics, fbs_default_grouping_fields)
    # add missing naics5/6 when only one naics5/6 associated with a naics4
    naics = sector_disaggregation(naics)
    # drop rows where sector consumed by is none and FlowAmount 0
    naics = naics[naics['SectorConsumedBy'].notnull()]
    naics = naics.loc[naics['FlowAmount'] != 0]
    # create ratios
    naics = sector_ratios(naics)
    # drop sectors < 4 digits
    #naics = naics[naics['SectorConsumedBy'].apply(lambda x: len(x) > 3)].reset_index(drop=True)
    # create temporary sector column to match the two dfs on
    naics.loc[:,
              'Location_tmp'] = naics['Location'].apply(lambda x: str(x[0:2]))

    # for loop through naics lengths to determine naics 4 and 5 digits to disaggregate
    for i in range(4, 6):
        # subset df to sectors with length = i and length = i + 1
        crop_subset = crop.loc[crop['Sector'].apply(
            lambda x: i + 1 >= len(x) >= i)]
        crop_subset.loc[:, 'Sector_tmp'] = crop_subset['Sector'].apply(
            lambda x: x[0:i])
        # if duplicates drop all rows
        df = crop_subset.drop_duplicates(subset=['Location', 'Sector_tmp'],
                                         keep=False).reset_index(drop=True)
        # drop sector temp column
        df = df.drop(columns=["Sector_tmp"])
        # subset df to keep the sectors of length i
        df_subset = df.loc[df['Sector'].apply(lambda x: len(x) == i)]
        # subset the naics df where naics length is i + 1
        naics_subset = naics.loc[naics['SectorConsumedBy'].apply(
            lambda x: len(x) == i + 1)].reset_index(drop=True)
        naics_subset.loc[:, 'Sector_tmp'] = naics_subset[
            'SectorConsumedBy'].apply(lambda x: x[0:i])
        # merge the two df based on locations
        df_subset = pd.merge(df_subset,
                             naics_subset[[
                                 'SectorConsumedBy', 'FlowAmountRatio',
                                 'Sector_tmp', 'Location_tmp'
                             ]],
                             how='left',
                             left_on=['Sector', 'Location_tmp'],
                             right_on=['Sector_tmp', 'Location_tmp'])
        # create flow amounts for the new NAICS based on the flow ratio
        df_subset.loc[:, 'FlowAmount'] = df_subset['FlowAmount'] * df_subset[
            'FlowAmountRatio']
        # drop rows of 0 and na
        df_subset = df_subset[df_subset['FlowAmount'] != 0]
        df_subset = df_subset[~df_subset['FlowAmount'].isna()].reset_index(
            drop=True)
        # drop columns
        df_subset = df_subset.drop(
            columns=['Sector', 'FlowAmountRatio', 'Sector_tmp'])
        # rename columns
        df_subset = df_subset.rename(columns={"SectorConsumedBy": "Sector"})
        # add new rows of data to crop df
        crop = pd.concat([crop, df_subset], sort=True).reset_index(drop=True)

    # clean up df
    crop = crop.drop(columns=['Location_tmp'])

    # pasture data
    pasture = fba_w_sector.loc[fba_w_sector['Sector'].apply(
        lambda x: str(x[0:3])) == '112'].reset_index(drop=True)

    # concat crop and pasture
    fba_w_sector = pd.concat([pasture, crop], sort=True).reset_index(drop=True)

    return fba_w_sector
示例#5
0
def main(**kwargs):
    """
    Creates a flowbysector dataset
    :param kwargs: dictionary of arguments, only argument is
        "method_name", the name of method corresponding to flowbysector
        method yaml name
    :return: parquet, FBS save to local folder
    """
    if len(kwargs) == 0:
        kwargs = parse_args()

    method_name = kwargs['method']
    download_FBA_if_missing = kwargs.get('download_FBAs_if_missing')
    # assign arguments
    vLog.info("Initiating flowbysector creation for %s", method_name)
    # call on method
    method = load_yaml_dict(method_name, flowbytype='FBS')
    # create dictionary of data and allocation datasets
    fb = method['source_names']
    # Create empty list for storing fbs files
    fbs_list = []
    for k, v in fb.items():
        # pull fba data for allocation
        flows = load_source_dataframe(k, v, download_FBA_if_missing)

        if v['data_format'] == 'FBA':
            # ensure correct datatypes and that all fields exist
            flows = clean_df(flows,
                             flow_by_activity_fields,
                             fba_fill_na_dict,
                             drop_description=False)

            # clean up fba before mapping, if specified in yaml
            if "clean_fba_before_mapping_df_fxn" in v:
                vLog.info("Cleaning up %s FlowByActivity", k)
                flows = dynamically_import_fxn(
                    k, v["clean_fba_before_mapping_df_fxn"])(flows)

            # map flows to federal flow list or material flow list
            flows_mapped, mapping_files = \
                map_fbs_flows(flows, k, v, keep_fba_columns=True)

            # clean up fba, if specified in yaml
            if "clean_fba_df_fxn" in v:
                vLog.info("Cleaning up %s FlowByActivity", k)
                flows_mapped = dynamically_import_fxn(
                    k, v["clean_fba_df_fxn"])(flows_mapped)

            # if activity_sets are specified in a file, call them here
            if 'activity_set_file' in v:
                aset_names = pd.read_csv(flowbysectoractivitysetspath +
                                         v['activity_set_file'],
                                         dtype=str)
            else:
                aset_names = None

            # master list of activity names read in from data source
            ml_act = []
            # create dictionary of allocation datasets for different activities
            activities = v['activity_sets']
            # subset activity data and allocate to sector
            for aset, attr in activities.items():
                # subset by named activities
                if 'activity_set_file' in v:
                    names = \
                        aset_names[aset_names['activity_set'] == aset]['name']
                else:
                    names = attr['names']

                # to avoid double counting data from the same source, in
                # the event there are values in both the APB and ACB
                # columns, if an activity has already been read in and
                # allocated, remove that activity from the mapped flows
                # regardless of what activity set the data was read in
                flows_mapped = flows_mapped[~(
                    (flows_mapped[fba_activity_fields[0]].isin(ml_act)) |
                    (flows_mapped[fba_activity_fields[1]].isin(ml_act))
                )].reset_index(drop=True)
                ml_act.extend(names)

                vLog.info("Preparing to handle %s in %s", aset, k)
                # subset fba data by activity
                flows_subset = flows_mapped[
                    (flows_mapped[fba_activity_fields[0]].isin(names)) |
                    (flows_mapped[fba_activity_fields[1]].isin(names)
                     )].reset_index(drop=True)

                # subset by flowname if exists
                if 'source_flows' in attr:
                    flows_subset = flows_subset[flows_subset['FlowName'].isin(
                        attr['source_flows'])]
                if len(flows_subset) == 0:
                    log.warning(f"no data found for flows in {aset}")
                    continue
                if len(flows_subset[flows_subset['FlowAmount'] != 0]) == 0:
                    log.warning(f"all flow data for {aset} is 0")
                    continue
                # if activities are sector-like, check sectors are valid
                if check_activities_sector_like(k):
                    flows_subset2 = replace_naics_w_naics_from_another_year(
                        flows_subset, method['target_sector_source'])

                    # check impact on df FlowAmounts
                    vLog.info(
                        'Calculate FlowAmount difference caused by '
                        'replacing NAICS Codes with %s, saving '
                        'difference in Validation log',
                        method['target_sector_source'],
                    )
                    calculate_flowamount_diff_between_dfs(
                        flows_subset, flows_subset2)
                else:
                    flows_subset2 = flows_subset.copy()

                # extract relevant geoscale data or aggregate existing data
                flows_subset_geo = subset_df_by_geoscale(
                    flows_subset2, v['geoscale_to_use'],
                    attr['allocation_from_scale'])
                # if loading data subnational geoscale, check for data loss
                if attr['allocation_from_scale'] != 'national':
                    compare_geographic_totals(flows_subset_geo, flows_mapped,
                                              k, attr, aset, names)

                # Add sectors to df activity, depending on level
                # of specified sector aggregation
                log.info("Adding sectors to %s", k)
                flows_subset_wsec = add_sectors_to_flowbyactivity(
                    flows_subset_geo,
                    sectorsourcename=method['target_sector_source'],
                    allocationmethod=attr['allocation_method'])
                # clean up fba with sectors, if specified in yaml
                if "clean_fba_w_sec_df_fxn" in v:
                    vLog.info("Cleaning up %s FlowByActivity with sectors", k)
                    flows_subset_wsec = dynamically_import_fxn(
                        k, v["clean_fba_w_sec_df_fxn"])(flows_subset_wsec,
                                                        attr=attr,
                                                        method=method)

                # rename SourceName to MetaSources and drop columns
                flows_mapped_wsec = flows_subset_wsec.\
                    rename(columns={'SourceName': 'MetaSources'}).\
                    drop(columns=['FlowName', 'Compartment'])

                # if allocation method is "direct", then no need
                # to create alloc ratios, else need to use allocation
                # dataframe to create sector allocation ratios
                if attr['allocation_method'] == 'direct':
                    fbs = direct_allocation_method(flows_mapped_wsec, k, names,
                                                   method)
                # if allocation method for an activity set requires a specific
                # function due to the complicated nature
                # of the allocation, call on function here
                elif attr['allocation_method'] == 'allocation_function':
                    fbs = function_allocation_method(flows_mapped_wsec, k,
                                                     names, attr, fbs_list)
                else:
                    fbs = dataset_allocation_method(flows_mapped_wsec, attr,
                                                    names, method, k, v, aset,
                                                    aset_names,
                                                    download_FBA_if_missing)

                # drop rows where flowamount = 0
                # (although this includes dropping suppressed data)
                fbs = fbs[fbs['FlowAmount'] != 0].reset_index(drop=True)

                # define grouping columns dependent on sectors
                # being activity-like or not
                if check_activities_sector_like(k) is False:
                    groupingcols = fbs_grouping_fields_w_activities
                    groupingdict = flow_by_sector_fields_w_activity
                else:
                    groupingcols = fbs_default_grouping_fields
                    groupingdict = flow_by_sector_fields

                # clean df
                fbs = clean_df(fbs, groupingdict, fbs_fill_na_dict)

                # aggregate df geographically, if necessary
                log.info("Aggregating flowbysector to %s level",
                         method['target_geoscale'])
                # determine from scale
                if fips_number_key[v['geoscale_to_use']] <\
                        fips_number_key[attr['allocation_from_scale']]:
                    from_scale = v['geoscale_to_use']
                else:
                    from_scale = attr['allocation_from_scale']

                fbs_geo_agg = agg_by_geoscale(fbs, from_scale,
                                              method['target_geoscale'],
                                              groupingcols)

                # aggregate data to every sector level
                log.info("Aggregating flowbysector to all sector levels")
                fbs_sec_agg = sector_aggregation(fbs_geo_agg, groupingcols)
                # add missing naics5/6 when only one naics5/6
                # associated with a naics4
                fbs_agg = sector_disaggregation(fbs_sec_agg)

                # check if any sector information is lost before reaching
                # the target sector length, if so,
                # allocate values equally to disaggregated sectors
                vLog.info(
                    'Searching for and allocating FlowAmounts for any parent '
                    'NAICS that were dropped in the subset to '
                    '%s child NAICS', method['target_sector_level'])
                fbs_agg_2 = equally_allocate_parent_to_child_naics(
                    fbs_agg, method['target_sector_level'])

                # compare flowbysector with flowbyactivity
                compare_activity_to_sector_flowamounts(flows_mapped_wsec,
                                                       fbs_agg_2, aset, k,
                                                       method)

                # return sector level specified in method yaml
                # load the crosswalk linking sector lengths
                sector_list = get_sector_list(method['target_sector_level'])

                # subset df, necessary because not all of the sectors are
                # NAICS and can get duplicate rows
                fbs_1 = fbs_agg_2.loc[
                    (fbs_agg_2[fbs_activity_fields[0]].isin(sector_list)) &
                    (fbs_agg_2[fbs_activity_fields[1]].isin(sector_list))].\
                    reset_index(drop=True)
                fbs_2 = fbs_agg_2.loc[
                    (fbs_agg_2[fbs_activity_fields[0]].isin(sector_list)) &
                    (fbs_agg_2[fbs_activity_fields[1]].isnull())].\
                    reset_index(drop=True)
                fbs_3 = fbs_agg_2.loc[
                    (fbs_agg_2[fbs_activity_fields[0]].isnull()) &
                    (fbs_agg_2[fbs_activity_fields[1]].isin(sector_list))].\
                    reset_index(drop=True)
                fbs_sector_subset = pd.concat([fbs_1, fbs_2, fbs_3])

                # drop activity columns
                fbs_sector_subset = fbs_sector_subset.drop(
                    ['ActivityProducedBy', 'ActivityConsumedBy'],
                    axis=1,
                    errors='ignore')

                # save comparison of FBA total to FBS total for an activity set
                compare_fba_geo_subset_and_fbs_output_totals(
                    flows_subset_geo, fbs_sector_subset, aset, k, v, attr,
                    method)

                log.info("Completed flowbysector for %s", aset)
                fbs_list.append(fbs_sector_subset)
        else:
            if 'clean_fbs_df_fxn' in v:
                flows = dynamically_import_fxn(v["clean_fbs_df_fxn_source"],
                                               v["clean_fbs_df_fxn"])(flows)
            flows = update_geoscale(flows, method['target_geoscale'])
            # if the loaded flow dt is already in FBS format,
            # append directly to list of FBS
            log.info("Append %s to FBS list", k)
            # ensure correct field datatypes and add any missing fields
            flows = clean_df(flows, flow_by_sector_fields, fbs_fill_na_dict)
            fbs_list.append(flows)
    # create single df of all activities
    log.info("Concat data for all activities")
    fbss = pd.concat(fbs_list, ignore_index=True, sort=False)
    log.info("Clean final dataframe")
    # add missing fields, ensure correct data type,
    # add missing columns, reorder columns
    fbss = clean_df(fbss, flow_by_sector_fields, fbs_fill_na_dict)
    # prior to aggregating, replace MetaSources string with all sources
    # that share context/flowable/sector values
    fbss = harmonize_FBS_columns(fbss)
    # aggregate df as activities might have data for
    # the same specified sector length
    fbss = aggregator(fbss, fbs_default_grouping_fields)
    # sort df
    log.info("Sort and store dataframe")
    # ensure correct data types/order of columns
    fbss = clean_df(fbss, flow_by_sector_fields, fbs_fill_na_dict)
    fbss = fbss.sort_values(
        ['SectorProducedBy', 'SectorConsumedBy', 'Flowable',
         'Context']).reset_index(drop=True)
    # check for negative flow amounts
    check_for_negative_flowamounts(fbss)
    # tmp reset data quality scores
    fbss = reset_fbs_dq_scores(fbss)
    # save parquet file
    meta = set_fb_meta(method_name, "FlowBySector")
    write_df_to_file(fbss, paths, meta)
    write_metadata(method_name, method, meta, "FlowBySector")
    # rename the log file saved to local directory
    rename_log_file(method_name, meta)
    log.info(
        'See the Validation log for detailed assessment of '
        'model results in %s', logoutputpath)
示例#6
0
def main(method_name):
    """
    Creates a flowbysector dataset
    :param method_name: Name of method corresponding to flowbysector method yaml name
    :return: flowbysector
    """

    log.info("Initiating flowbysector creation for " + method_name)
    # call on method
    method = load_method(method_name)
    # create dictionary of data and allocation datasets
    fb = method['source_names']
    # Create empty list for storing fbs files
    fbss = []
    for k, v in fb.items():
        # pull fba data for allocation
        flows = load_source_dataframe(k, v)

        if v['data_format'] == 'FBA':
            # clean up fba, if specified in yaml
            if v["clean_fba_df_fxn"] != 'None':
                log.info("Cleaning up " + k + " FlowByActivity")
                flows = getattr(sys.modules[__name__], v["clean_fba_df_fxn"])(flows)

            flows = clean_df(flows, flow_by_activity_fields, fba_fill_na_dict)

            # create dictionary of allocation datasets for different activities
            activities = v['activity_sets']
            # subset activity data and allocate to sector
            for aset, attr in activities.items():
                # subset by named activities
                names = attr['names']
                log.info("Preparing to handle subset of flownames " + ', '.join(map(str, names)) + " in " + k)

                # check if flowbyactivity data exists at specified geoscale to use
                flow_subset_list = []
                for n in names:
                    # subset usgs data by activity
                    flow_subset = flows[(flows[fba_activity_fields[0]] == n) |
                                        (flows[fba_activity_fields[1]] == n)].reset_index(drop=True)
                    log.info("Checking if flowbyactivity data exists for " + n + " at the " +
                             v['geoscale_to_use'] + ' level')
                    geocheck = check_if_data_exists_at_geoscale(flow_subset, v['geoscale_to_use'], activitynames=n)
                    # aggregate geographically to the scale of the allocation dataset
                    if geocheck == "Yes":
                        activity_from_scale = v['geoscale_to_use']
                    else:
                        # if activity does not exist at specified geoscale, issue warning and use data at less aggregated
                        # geoscale, and sum to specified geoscale
                        log.info("Checking if flowbyactivity data exists for " + n + " at a less aggregated level")
                        activity_from_scale = check_if_data_exists_at_less_aggregated_geoscale(flow_subset,
                                                                                               v['geoscale_to_use'], n)

                    activity_to_scale = attr['allocation_from_scale']
                    # if df is less aggregated than allocation df, aggregate usgs activity to allocation geoscale
                    if fips_number_key[activity_from_scale] > fips_number_key[activity_to_scale]:
                        log.info("Aggregating subset from " + activity_from_scale + " to " + activity_to_scale)
                        flow_subset = agg_by_geoscale(flow_subset, activity_from_scale, activity_to_scale,
                                                      fba_default_grouping_fields, n)
                    # else, aggregate to geoscale want to use
                    elif fips_number_key[activity_from_scale] > fips_number_key[v['geoscale_to_use']]:
                        log.info("Aggregating subset from " + activity_from_scale + " to " + v['geoscale_to_use'])
                        flow_subset = agg_by_geoscale(flow_subset, activity_from_scale, v['geoscale_to_use'],
                                                      fba_default_grouping_fields, n)
                    # else, if usgs is more aggregated than allocation table, filter relevant rows
                    else:
                        log.info("Subsetting " + activity_from_scale + " data")
                        flow_subset = filter_by_geoscale(flow_subset, activity_from_scale, n)

                    # Add sectors to df activity, depending on level of specified sector aggregation
                    log.info("Adding sectors to " + k + " for " + n)
                    flow_subset_wsec = add_sectors_to_flowbyactivity(flow_subset,
                                                                     sectorsourcename=method['target_sector_source'],
                                                                     levelofSectoragg=attr['activity_sector_aggregation'])
                    flow_subset_list.append(flow_subset_wsec)
                flow_subset_wsec = pd.concat(flow_subset_list, sort=False).reset_index(drop=True)

                # clean up fba with sectors, if specified in yaml
                if v["clean_fba_w_sec_df_fxn"] != 'None':
                    log.info("Cleaning up " + k + " FlowByActivity with sectors")
                    flow_subset_wsec = getattr(sys.modules[__name__], v["clean_fba_w_sec_df_fxn"])(flow_subset_wsec, attr)

                # map df to elementary flows - commented out until mapping complete
                log.info("Mapping flows in " + k + ' to federal elementary flow list')
                flow_subset_wsec = map_elementary_flows(flow_subset_wsec, k)

                # if allocation method is "direct", then no need to create alloc ratios, else need to use allocation
                # dataframe to create sector allocation ratios
                if attr['allocation_method'] == 'direct':
                    log.info('Directly assigning ' + ', '.join(map(str, names)) + ' to sectors')
                    fbs = flow_subset_wsec.copy()

                else:
                    # determine appropriate allocation dataset
                    log.info("Loading allocation flowbyactivity " + attr['allocation_source'] + " for year " +
                             str(attr['allocation_source_year']))
                    fba_allocation = flowsa.getFlowByActivity(flowclass=[attr['allocation_source_class']],
                                                              datasource=attr['allocation_source'],
                                                              years=[attr['allocation_source_year']]).reset_index(drop=True)

                    fba_allocation = clean_df(fba_allocation, flow_by_activity_fields, fba_fill_na_dict)

                    # subset based on yaml settings
                    if attr['allocation_flow'] != 'None':
                        fba_allocation = fba_allocation.loc[fba_allocation['FlowName'].isin(attr['allocation_flow'])]
                    if attr['allocation_compartment'] != 'None':
                        fba_allocation = fba_allocation.loc[
                            fba_allocation['Compartment'].isin(attr['allocation_compartment'])]
                    # cleanup the fba allocation df, if necessary
                    if 'clean_allocation_fba' in attr:
                        log.info("Cleaning " + attr['allocation_source'])
                        fba_allocation = getattr(sys.modules[__name__],
                                                 attr["clean_allocation_fba"])(fba_allocation)
                    # reset index
                    fba_allocation = fba_allocation.reset_index(drop=True)

                    # check if allocation data exists at specified geoscale to use
                    log.info("Checking if allocation data exists at the " + attr['allocation_from_scale'] + " level")
                    check_if_data_exists_at_geoscale(fba_allocation, attr['allocation_from_scale'])

                    # aggregate geographically to the scale of the flowbyactivty source, if necessary
                    from_scale = attr['allocation_from_scale']
                    to_scale = v['geoscale_to_use']
                    # if allocation df is less aggregated than FBA df, aggregate allocation df to target scale
                    if fips_number_key[from_scale] > fips_number_key[to_scale]:
                        fba_allocation = agg_by_geoscale(fba_allocation, from_scale, to_scale,
                                                         fba_default_grouping_fields, names)
                    # else, if usgs is more aggregated than allocation table, use usgs as both to and from scale
                    else:
                        fba_allocation = filter_by_geoscale(fba_allocation, from_scale, names)

                    # assign sector to allocation dataset
                    log.info("Adding sectors to " + attr['allocation_source'])
                    fba_allocation = add_sectors_to_flowbyactivity(fba_allocation,
                                                                   sectorsourcename=method['target_sector_source'],
                                                                   levelofSectoragg=attr['allocation_sector_aggregation'])

                    # subset fba datsets to only keep the sectors associated with activity subset
                    log.info("Subsetting " + attr['allocation_source'] + " for sectors in " + k)
                    fba_allocation_subset = get_fba_allocation_subset(fba_allocation, k, names)

                    # generalize activity field names to enable link to main fba source
                    log.info("Generalizing activity columns in subset of " + attr['allocation_source'])
                    fba_allocation_subset = generalize_activity_field_names(fba_allocation_subset)
                    # drop columns
                    fba_allocation_subset = fba_allocation_subset.drop(columns=['Activity'])

                    # call on fxn to further disaggregate the fba allocation data, if exists
                    if 'allocation_disaggregation_fxn' in attr:
                        log.info("Futher disaggregating sectors in " + attr['allocation_source'])
                        fba_allocation_subset = getattr(sys.modules[__name__],
                                                        attr["allocation_disaggregation_fxn"])(fba_allocation_subset, attr)

                    # if there is an allocation helper dataset, modify allocation df
                    if attr['allocation_helper'] == 'yes':
                        log.info("Using the specified allocation help for subset of " + attr['allocation_source'])
                        fba_allocation_subset = allocation_helper(fba_allocation_subset, method, attr)

                    # create flow allocation ratios
                    log.info("Creating allocation ratios for " + attr['allocation_source'])
                    flow_allocation = allocate_by_sector(fba_allocation_subset, attr['allocation_method'])

                    # create list of sectors in the flow allocation df, drop any rows of data in the flow df that \
                    # aren't in list
                    sector_list = flow_allocation['Sector'].unique().tolist()

                    # subset fba allocation table to the values in the activity list, based on overlapping sectors
                    flow_subset_wsec = flow_subset_wsec.loc[
                        (flow_subset_wsec[fbs_activity_fields[0]].isin(sector_list)) |
                        (flow_subset_wsec[fbs_activity_fields[1]].isin(sector_list))]

                    # check if fba and allocation dfs have the same LocationSystem
                    log.info("Checking if flowbyactivity and allocation dataframes use the same location systems")
                    check_if_location_systems_match(flow_subset_wsec, flow_allocation)

                    # merge fba df w/flow allocation dataset
                    log.info("Merge " + k + " and subset of " + attr['allocation_source'])
                    fbs = flow_subset_wsec.merge(
                        flow_allocation[['Location', 'Sector', 'FlowAmountRatio']],
                        left_on=['Location', 'SectorProducedBy'],
                        right_on=['Location', 'Sector'], how='left')

                    fbs = fbs.merge(
                        flow_allocation[['Location', 'Sector', 'FlowAmountRatio']],
                        left_on=['Location', 'SectorConsumedBy'],
                        right_on=['Location', 'Sector'], how='left')

                    # merge the flowamount columns
                    fbs.loc[:, 'FlowAmountRatio'] = fbs['FlowAmountRatio_x'].fillna(fbs['FlowAmountRatio_y'])

                    # check if fba and alloc dfs have data for same geoscales - comment back in after address the 'todo'
                    # log.info("Checking if flowbyactivity and allocation dataframes have data at the same locations")
                    # check_if_data_exists_for_same_geoscales(fbs, k, attr['names'])

                    # drop rows where there is no allocation data
                    fbs = fbs.dropna(subset=['Sector_x', 'Sector_y'], how='all').reset_index()

                    # calculate flow amounts for each sector
                    log.info("Calculating new flow amounts using flow ratios")
                    fbs.loc[:, 'FlowAmount'] = fbs['FlowAmount'] * fbs['FlowAmountRatio']

                    # drop columns
                    log.info("Cleaning up new flow by sector")
                    fbs = fbs.drop(columns=['Sector_x', 'FlowAmountRatio_x', 'Sector_y', 'FlowAmountRatio_y',
                                            'FlowAmountRatio', 'ActivityProducedBy', 'ActivityConsumedBy'])

                # drop rows where flowamount = 0 (although this includes dropping suppressed data)
                fbs = fbs[fbs['FlowAmount'] != 0].reset_index(drop=True)

                # clean df
                fbs = clean_df(fbs, flow_by_sector_fields, fbs_fill_na_dict)

                # aggregate df geographically, if necessary
                log.info("Aggregating flowbysector to " + method['target_geoscale'] + " level")
                if fips_number_key[v['geoscale_to_use']] < fips_number_key[attr['allocation_from_scale']]:
                    from_scale = v['geoscale_to_use']
                else:
                    from_scale = attr['allocation_from_scale']

                to_scale = method['target_geoscale']

                fbs = agg_by_geoscale(fbs, from_scale, to_scale, fbs_default_grouping_fields, names)

                # aggregate data to every sector level
                log.info("Aggregating flowbysector to all sector levels")
                fbs = sector_aggregation(fbs, fbs_default_grouping_fields)
                # add missing naics5/6 when only one naics5/6 associated with a naics4
                fbs = sector_disaggregation(fbs)

                # test agg by sector
                # sector_agg_comparison = sector_flow_comparision(fbs)

                # return sector level specified in method yaml
                # load the crosswalk linking sector lengths
                sector_list = get_sector_list(method['target_sector_level'])
                # add any non-NAICS sectors used with NAICS
                sector_list = add_non_naics_sectors(sector_list, method['target_sector_level'])

                # subset df, necessary because not all of the sectors are NAICS and can get duplicate rows
                fbs_1 = fbs.loc[(fbs[fbs_activity_fields[0]].isin(sector_list)) &
                                (fbs[fbs_activity_fields[1]].isin(sector_list))].reset_index(drop=True)
                fbs_2 = fbs.loc[(fbs[fbs_activity_fields[0]].isin(sector_list)) |
                                (fbs[fbs_activity_fields[1]].isin(sector_list))].reset_index(drop=True)
                fbs_sector_subset = pd.concat([fbs_1, fbs_2], sort=False)

                # set source name
                fbs_sector_subset.loc[:, 'SectorSourceName'] = method['target_sector_source']

                log.info("Completed flowbysector for activity subset with flows " + ', '.join(map(str, names)))
                fbss.append(fbs_sector_subset)
        else:
            # if the loaded flow dt is already in FBS format, append directly to list of FBS
            log.info("Append " + k + " to FBS list")
            fbss.append(flows)
    # create single df of all activities
    log.info("Concat data for all activities")
    fbss = pd.concat(fbss, ignore_index=True, sort=False)
    log.info("Clean final dataframe")
    # aggregate df as activities might have data for the same specified sector length
    fbss = aggregator(fbss, fbs_default_grouping_fields)
    # sort df
    log.info("Sort and store dataframe")
    fbss = fbss.replace({'nan': None})
    # add missing fields, ensure correct data type, reorder columns
    fbss = clean_df(fbss, flow_by_sector_fields, fbs_fill_na_dict)
    fbss = fbss.sort_values(
        ['SectorProducedBy', 'SectorConsumedBy', 'Flowable', 'Context']).reset_index(drop=True)
    # save parquet file
    store_flowbysector(fbss, method_name)
示例#7
0
def allocate_by_sector(df_w_sectors, allocation_method, group_cols, **kwargs):
    """
    Create an allocation ratio for df
    :param df_w_sectors: df with column of sectors
    :param allocation_method: currently written for 'proportional' and 'proportional-flagged'
    :param group_cols: columns on which to base aggregation and disaggregation
    :return: df with FlowAmountRatio for each sector
    """

    # first determine if there is a special case with how the allocation ratios are created
    if allocation_method == 'proportional-flagged':
        # if the allocation method is flagged, subset sectors that are
        # flagged/notflagged, where nonflagged sectors have flowamountratio=1
        if kwargs != {}:
            if 'flowSubsetMapped' in kwargs:
                fsm = kwargs['flowSubsetMapped']
                flagged = fsm[fsm['disaggregate_flag'] == 1]
                if flagged['SectorProducedBy'].isna().all():
                    sector_col = 'SectorConsumedBy'
                else:
                    sector_col = 'SectorProducedBy'
                flagged_names = flagged[sector_col].tolist()

                nonflagged = fsm[fsm['disaggregate_flag'] == 0]
                nonflagged_names = nonflagged[sector_col].tolist()

                # subset the original df so rows of data that run through the
                # proportional allocation process are
                # sectors included in the flagged list
                df_w_sectors_nonflagged = df_w_sectors.loc[(
                    df_w_sectors[fbs_activity_fields[0]].isin(nonflagged_names)
                ) | (df_w_sectors[fbs_activity_fields[1]].
                     isin(nonflagged_names))].reset_index(drop=True)
                df_w_sectors_nonflagged = df_w_sectors_nonflagged.assign(
                    FlowAmountRatio=1)

                df_w_sectors = \
                    df_w_sectors.loc[(df_w_sectors[fbs_activity_fields[0]].isin(flagged_names)) |
                                     (df_w_sectors[fbs_activity_fields[1]].isin(flagged_names))
                                    ].reset_index(drop=True)
            else:
                log.error(
                    'The proportional-flagged allocation method requires a'
                    'column "disaggregate_flag" in the flow_subset_mapped df')

    # run sector aggregation fxn to determine total flowamount for each level of sector
    if len(df_w_sectors) == 0:
        allocation_df = df_w_sectors_nonflagged.copy()
    else:
        df1 = sector_aggregation(df_w_sectors, group_cols)
        # run sector disaggregation to capture one-to-one naics4/5/6 relationships
        df2 = sector_disaggregation(df1)

        # if statements for method of allocation
        # either 'proportional' or 'proportional-flagged'
        allocation_df = []
        if allocation_method in ('proportional', 'proportional-flagged'):
            allocation_df = proportional_allocation_by_location(df2)
        else:
            log.error(
                'Must create function for specified method of allocation')

        if allocation_method == 'proportional-flagged':
            # drop rows where values are not in flagged names
            allocation_df =\
                allocation_df.loc[(allocation_df[fbs_activity_fields[0]].isin(flagged_names)) |
                                  (allocation_df[fbs_activity_fields[1]].isin(flagged_names)
                                   )].reset_index(drop=True)
            # concat the flagged and nonflagged dfs
            allocation_df = \
                pd.concat([allocation_df, df_w_sectors_nonflagged],
                          ignore_index=True).sort_values(['SectorProducedBy', 'SectorConsumedBy'])

    return allocation_df