示例#1
0
def callback(cb: CallbackModel, where: Where):
    if where == Where.PathMIPCuts:
        epsilon = 1e-4
        relax = cb.x

        # Enumerate cuts for |S| = 2
        for i in range(n)[1:-1]:
            for j in range(n)[1:-1]:

                # not depot nodes in S
                if i == 0 or j == n - 1 or i == j:
                    continue

                rhs = math.ceil((d[i] + d[j]) / Q)

                lhs = 0
                lhsIdxs = []
                for e, edge in enumerate(E):
                    # inside S
                    if (i, j) == edge or (j, i) == edge:
                        continue

                    # if either end of edge is in S
                    if i == edge[0] or i == edge[1] or j == edge[0] or j == edge[1]:
                        lhs += relax[e]
                        lhsIdxs += [e]

                if lhs < rhs - epsilon:
                    cb.addCut(xsum(g.vars[e] for e in lhsIdxs) >= rhs)
示例#2
0
            path = []

            index = E.index((0, i))
            path.append(index)
            cost += c[index]

            index = E.index((i, n - 1))
            path.append(index)
            cost += c[index]

            cb.addPath(cost, path)


m.setCallback(callback)

# set partition constriants
for i in range(n)[1:-1]:
    m += xsum(x * 1 for x in g.vars if i == x.source) == 1

# packing set
for i in range(n)[1:-1]:
    m.addPackingSet([x for x in g.vars if i == x.source])

status = m.optimize()
# print(f"ObjectiveValue {round(m.objectiveValue, 1)}")

# get the variable values
# for var in m.vars:
#     if var.x > 0:
#         print(f"{var.name} = {round(var.x, 1)}")
示例#3
0
    # sum_(j) x_ji - sum_(j) x_ij = 0 , forall i
    for i in range(n)[1:-1]:
        expr = LinExpr()
        [expr.addTerm(1, x) for x, e in zip(xsk, E) if e[1] == i]
        [expr.addTerm(-1, x) for x, e in zip(xsk, E) if e[0] == i]
        m.addConstr(expr == 0)
        # sum_(j,n-1) x_j,n-1 = 1

    expr = LinExpr()
    [expr.addTerm(1, x) for x, e in zip(xsk, E) if e[1] == n - 1]
    m.addConstr(expr + xFeasiblity == 1)

    # capacity constraint
    # sum_(ij) d_i * x_ij <= Q
    m.addConstr(xsum(x * d[e[0]] for x, e in zip(xsk, E)) <= Q)

    # time stamp per vertex
    qt = [
        m.addVar(lb=0, ub=max(b), obj=0, type="C", name=f"q_t_{i}_{k}")
        for i in range(n)
    ]

    # time winwos
    # q_ik + t_ij - q_jk <= (1 - x_ijk)M , forall (i,j)
    for j, e in enumerate(E):
        bigM = b[e[0]] + t[j]
        m.addConstr(qt[e[0]] * 1 - qt[e[1]] * 1 + xsk[j] * bigM <= bigM - t[j])
    # a_i sum_(j) x_ijk <= q_ik
    for i in range(n)[1:-1]:
        expr = LinExpr()
示例#4
0
    # keep track of voyageEdges for constraints later
    tmp = list([eid["index"] for eid in voyageEdgeIds])
    for j, e in enumerate(es):
        for h, eid in enumerate(tmp):
            if g.edges[e]["index"] == eid:
                voyageEdgeVarsIds[eid][i] = j
                tmp.remove(eid)
                break

# graph vars
vars = [gs[i].vars for i in range(k)]

# sum_( i,j \in delta+(o^k)) x_ijk = 1 , forall k
for i in range(k):
    source = gs[i].source
    m.addConstr(xsum((1, x) for x in vars[i] if source == x.source) == 1)

for j, ks in enumerate(voyageEdgeVarsIds):
    expr = LinExpr()
    for i, h in ks.items():
        x = vars[i][h]
        expr.addTerm(builder.demand["FFEPerWeek"][i], x)
    m.addConstr(expr <= builder.capacity[j])

status = m.optimize()
# print(f"ObjectiveValue {round(m.objectiveValue, 5)}")

# get the variable values
# for var in m.vars:
#     if var.x > 0:
#         print(f"{var.name} = {round(var.x, 5)}")
示例#5
0
# 0-1 Knapsack problem
from flowty import Model, xsum
from or_datasets import pisinger

bunch = pisinger.fetch_knapsack("small", instance="knapPI_1_50_1000_1")
name, n, c, p, w, z, x = bunch["instance"]

m = Model()
m.setParam("Algorithm", "MIP")

for i in range(n):
    m.addVar(lb=0, ub=1, obj=-p[i], type="B")

m.addConstr(xsum(w[i] * v for i, v in enumerate(m.vars)) <= c)

status = m.optimize()
# print(f"ObjectiveValue {round(m.objectiveValue)} == {-z}")

# get the variable values
# for var in m.vars:
#     if var.x > 0:
#         print(f"{var.name} = {round(var.x, 1)}")
            index = E.index((i, n - 1))
            xEdges[index] = 1
            cost += c[index]

        cb.addSolution(cost, xEdges)

    # Verify solution
    if where == Where.PathMIPSolution:
        x = cb.x  # candidate solution

        # check is solution is infeasible and skip it if so
        isInfeasible = False
        if isInfeasible:
            cb.skip()


m.setCallback(callback)

# set partitioning constraints
for i in range(n)[1:-1]:
    m.addConstr(xsum(1 * x for x in g.vars if i == x.source) == 1)
    m.addPackingSet([x for x in g.vars if i == x.source])

status = m.optimize()
# print(f"ObjectiveValue {round(m.objectiveValue, 1)}")

# get the variable values
# for var in m.vars:
#     if var.x > 0:
#         print(f"{var.name} = {round(var.x, 1)}")