示例#1
0
def Elamvaluthi_Srinivas(m, x, D, rhol, rhog, Cpl, kl, mug, mu_b, mu_w=None):
    r'''Calculates the two-phase non-boiling heat transfer coefficient of a
    liquid and gas flowing inside a tube of any inclination, as in [1]_ and
    reviewed in [2]_.

    .. math::
        \frac{h_{TP} D}{k_L} = 0.5\left(\frac{\mu_G}{\mu_L}\right)^{0.25}
        Re_M^{0.7} Pr^{1/3}_L (\mu_b/\mu_w)^{0.14}

    .. math::
        Re_M = \frac{D V_L \rho_L}{\mu_L} + \frac{D V_g \rho_g}{\mu_g}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval [-]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    mug : float
        Viscosity of gas [Pa*s]
    mu_b : float
        Viscosity of liquid at bulk conditions (average of inlet/outlet
        temperature) [Pa*s]
    mu_w : float, optional
        Viscosity of liquid at wall temperature [Pa*s]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    If the viscosity at the wall temperature is not given, the liquid viscosity
    correction is not applied.

    Developed for vertical flow, and flow patters of bubbly and slug.
    Gas/liquid superficial velocity ratios from 0.3 to 4.6, liquid mass fluxes
    from 200 to 1600 kg/m^2/s, and the fluids tested were air-water and
    air-aqueous glycerine solutions. The tube inner diameter was 1 cm, and the
    L/D ratio was 86.

    Examples
    --------
    >>> Elamvaluthi_Srinivas(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300,
    ... kl=.6, mug=1E-5, mu_b=1E-3, mu_w=1.2E-3)
    3901.2134471578584

    References
    ----------
    .. [1] Elamvaluthi, G., and N. S. Srinivas. "Two-Phase Heat Transfer in Two
       Component Vertical Flows." International Journal of Multiphase Flow 10,
       no. 2 (April 1, 1984): 237-42. doi:10.1016/0301-9322(84)90021-1.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    Vg = m * x / (rhog * pi / 4 * D**2)
    Vl = m * (1 - x) / (rhol * pi / 4 * D**2)

    Prl = Prandtl(Cp=Cpl, mu=mu_b, k=kl)
    ReM = D * Vl * rhol / mu_b + D * Vg * rhog / mug
    Nu_TP = 0.5 * (mug / mu_b)**0.25 * ReM**0.7 * Prl**(1 / 3.)
    if mu_w:
        Nu_TP *= (mu_b / mu_w)**0.14
    return Nu_TP * kl / D
示例#2
0
def Ravipudi_Godbold(m, x, D, rhol, rhog, Cpl, kl, mug, mu_b, mu_w=None):
    r'''Calculates the two-phase non-boiling heat transfer coefficient of a
    liquid and gas flowing inside a tube of any inclination, as in [1]_ and
    reviewed in [2]_.

    .. math::
        Nu = \frac{h_{TP} D}{k_l} = 0.56 \left(\frac{V_{gs}}{V_{ls}}
        \right)^{0.3}\left(\frac{\mu_g}{\mu_l}\right)^{0.2} Re_{ls}^{0.6}
        Pr_l^{1/3}\left(\frac{\mu_b}{\mu_w}\right)^{0.14}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval [-]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    mug : float
        Viscosity of gas [Pa*s]
    mu_b : float
        Viscosity of liquid at bulk conditions (average of inlet/outlet
        temperature) [Pa*s]
    mu_w : float, optional
        Viscosity of liquid at wall temperature [Pa*s]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    If the viscosity at the wall temperature is not given, the liquid viscosity
    correction is not applied.

    Developed with a vertical pipe, superficial gas/liquid velocity ratios of
    1-90, in the froth regime, and for fluid mixtures of air and water,
    toluene, benzene, and methanol.

    Examples
    --------
    >>> Ravipudi_Godbold(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6, mug=1E-5, mu_b=1E-3, mu_w=1.2E-3)
    299.3796286459285

    References
    ----------
    .. [1] Ravipudi, S., and Godbold, T., The Effect of Mass Transfer on Heat
       Transfer Rates for Two-Phase Flow in a Vertical Pipe, Proceedings 6th
       International Heat Transfer Conference, Toronto, V. 1, p. 505-510, 1978.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    Vgs = m * x / (rhog * pi / 4 * D**2)
    Vls = m * (1 - x) / (rhol * pi / 4 * D**2)
    Prl = Prandtl(Cp=Cpl, mu=mu_b, k=kl)
    Rels = D * Vls * rhol / mu_b
    Nu = 0.56 * (Vgs / Vls)**0.3 * (mug / mu_b)**0.2 * Rels**0.6 * Prl**(1 /
                                                                         3.)
    if mu_w is not None:
        Nu *= (mu_b / mu_w)**0.14
    return Nu * kl / D
示例#3
0
def Aggour(m,
           x,
           alpha,
           D,
           rhol,
           Cpl,
           kl,
           mu_b,
           mu_w=None,
           L=None,
           turbulent=None):
    r'''Calculates the two-phase non-boiling laminar heat transfer coefficient
    of a liquid and gas flowing inside a tube of any inclination, as in [1]_
    and reviewed in [2]_.

    Laminar for Rel <= 2000:

    .. math::
        h_{TP} = 1.615\frac{k_l}{D}\left(\frac{Re_l Pr_l D}{L}\right)^{1/3}
        \left(\frac{\mu_b}{\mu_w}\right)^{0.14}

    Turbulent for Rel > 2000:

    .. math::
        h_{TP} = 0.0155\frac{k_l}{D} Pr_l^{0.5} Re_l^{0.83}

    .. math::
        Re_l = \frac{\rho_l v_l D}{\mu_l}

    .. math::
        V_l = \frac{V_{ls}}{1-\alpha}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval [-]
    alpha : float
        Void fraction in the tube, [-]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    mu_b : float
        Viscosity of liquid at bulk conditions (average of inlet/outlet
        temperature) [Pa*s]
    mu_w : float, optional
        Viscosity of liquid at wall temperature [Pa*s]
    L : float, optional
        Length of the tube, [m]
    turbulent : bool or None, optional
        Whether or not to force the correlation to return the turbulent
        result; will return the laminar regime if False

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    Developed with mixtures of air-water, helium-water, and freon-12-water and
    vertical tests. Studied flow patterns were bubbly, slug, annular,
    bubbly-slug, and slug-annular regimes. Superficial velocity ratios ranged
    from 0.02 to 470.

    A viscosity correction is only suggested for the laminar regime.
    If the viscosity at the wall temperature is not given, the liquid viscosity
    correction is not applied.

    Examples
    --------
    >>> Aggour(m=1, x=.9, D=.3, alpha=.9, rhol=1000, Cpl=2300, kl=.6, mu_b=1E-3)
    420.9347146885667

    References
    ----------
    .. [1] Aggour, Mohamed A. Hydrodynamics and Heat Transfer in Two-Phase
       Two-Component Flows, Ph.D. Thesis, University of Manutoba, Canada
       (1978). http://mspace.lib.umanitoba.ca/xmlui/handle/1993/14171.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    Vls = m * (1 - x) / (rhol * pi / 4 * D**2)
    Vl = Vls / (1. - alpha)

    Prl = Prandtl(Cp=Cpl, k=kl, mu=mu_b)
    Rel = Reynolds(V=Vl, D=D, rho=rhol, mu=mu_b)

    if turbulent or (Rel > 2000.0 and turbulent is None):
        hl = 0.0155 * (kl / D) * Rel**0.83 * Prl**0.5
        return hl * (1 - alpha)**-0.83
    else:
        hl = 1.615 * (kl / D) * (Rel * Prl * D / L)**(1 / 3.)
        if mu_w:
            hl *= (mu_b / mu_w)**0.14
        return hl * (1.0 - alpha)**(-1 / 3.)
示例#4
0
def Kudirka_Grosh_McFadden(m, x, D, rhol, rhog, Cpl, kl, mug, mu_b, mu_w=None):
    r'''Calculates the two-phase non-boiling heat transfer coefficient of a
    liquid and gas flowing inside a tube of any inclination, as in [1]_ and
    reviewed in [2]_.

    .. math::
        Nu = \frac{h_{TP} D}{k_l} = 125 \left(\frac{V_{gs}}{V_{ls}}
        \right)^{0.125}\left(\frac{\mu_g}{\mu_l}\right)^{0.6} Re_{ls}^{0.25}
        Pr_l^{1/3}\left(\frac{\mu_b}{\mu_w}\right)^{0.14}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval [-]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    mug : float
        Viscosity of gas [Pa*s]
    mu_b : float
        Viscosity of liquid at bulk conditions (average of inlet/outlet
        temperature) [Pa*s]
    mu_w : float, optional
        Viscosity of liquid at wall temperature [Pa*s]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    If the viscosity at the wall temperature is not given, the liquid viscosity
    correction is not applied.

    Developed for air-water and air-ethylene glycol systems with a L/D of 17.6
    and at low gas-liquid ratios. The flow regimes studied were bubble, slug,
    and froth flow.

    Examples
    --------
    >>> Kudirka_Grosh_McFadden(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300,
    ... kl=.6, mug=1E-5, mu_b=1E-3, mu_w=1.2E-3)
    303.9941255903587

    References
    ----------
    .. [1] Kudirka, A. A., R. J. Grosh, and P. W. McFadden. "Heat Transfer in
       Two-Phase Flow of Gas-Liquid Mixtures." Industrial & Engineering
       Chemistry Fundamentals 4, no. 3 (August 1, 1965): 339-44.
       doi:10.1021/i160015a018.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    Vgs = m * x / (rhog * pi / 4 * D**2)
    Vls = m * (1 - x) / (rhol * pi / 4 * D**2)
    Prl = Prandtl(Cp=Cpl, mu=mu_b, k=kl)
    Rels = D * Vls * rhol / mu_b
    Nu = 125 * (Vgs / Vls)**0.125 * (mug / mu_b)**0.6 * Rels**0.25 * Prl**(1 /
                                                                           3.)
    if mu_w:
        Nu *= (mu_b / mu_w)**0.14
    return Nu * kl / D
示例#5
0
def Martin_Sims(m,
                x,
                D,
                rhol,
                rhog,
                hl=None,
                Cpl=None,
                kl=None,
                mu_b=None,
                mu_w=None,
                L=None):
    r'''Calculates the two-phase non-boiling heat transfer coefficient of a
    liquid and gas flowing inside a tube of any inclination, as in [1]_ and
    reviewed in [2]_.

    .. math::
        \frac{h_{TP}}{h_l} = 1 + 0.64\sqrt{\frac{V_{gs}}{V_{ls}}}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval []
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    hl : float, optional
        Liquid-phase heat transfer coefficient as described below, [W/m^2/K]
    Cpl : float, optional
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float, optional
        Thermal conductivity of liquid [W/m/K]
    mu_b : float, optional
        Viscosity of liquid at bulk conditions (average of inlet/outlet
        temperature) [Pa*s]
    mu_w : float, optional
        Viscosity of liquid at wall temperature [Pa*s]
    L : float, optional
        Length of the tube [m]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    No specific suggestion for how to calculate the liquid-phase heat transfer
    coefficient is given in [1]_; [2]_ suggests to use the same procedure as
    in `Knott`.

    Examples
    --------
    >>> Martin_Sims(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, hl=141.2)
    5563.280000000001
    >>> Martin_Sims(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6,
    ... mu_b=1E-3, mu_w=1.2E-3, L=24)
    5977.505465781747

    References
    ----------
    .. [1] Martin, B. W, and G. E Sims. "Forced Convection Heat Transfer to
       Water with Air Injection in a Rectangular Duct." International Journal
       of Heat and Mass Transfer 14, no. 8 (August 1, 1971): 1115-34.
       doi:10.1016/0017-9310(71)90208-0.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    Vgs = m * x / (rhog * pi / 4 * D**2)
    Vls = m * (1 - x) / (rhol * pi / 4 * D**2)
    if hl is None:
        V = Vgs + Vls  # Net velocity
        Re = Reynolds(V=V, D=D, rho=rhol, mu=mu_b)
        Pr = Prandtl(Cp=Cpl, k=kl, mu=mu_b)
        Nul = laminar_entry_Seider_Tate(Re=Re,
                                        Pr=Pr,
                                        L=L,
                                        Di=D,
                                        mu=mu_b,
                                        mu_w=mu_w)
        hl = Nul * kl / D
    return hl * (1.0 + 0.64 * (Vgs / Vls)**0.5)
示例#6
0
def Knott(m,
          x,
          D,
          rhol,
          rhog,
          Cpl=None,
          kl=None,
          mu_b=None,
          mu_w=None,
          L=None,
          hl=None):
    r'''Calculates the two-phase non-boiling heat transfer coefficient of a
    liquid and gas flowing inside a tube of any inclination, as in [1]_ and
    reviewed in [2]_.

    Either a specified `hl` is required, or `Cpl`, `kl`, `mu_b`, `mu_w` and
    `L` are required to calculate `hl`.

    .. math::
        \frac{h_{TP}}{h_l} = \left(1 + \frac{V_{gs}}{V_{ls}}\right)^{1/3}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval [-]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    Cpl : float, optional
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float, optional
        Thermal conductivity of liquid [W/m/K]
    mu_b : float, optional
        Viscosity of liquid at bulk conditions (average of inlet/outlet
        temperature) [Pa*s]
    mu_w : float, optional
        Viscosity of liquid at wall temperature [Pa*s]
    L : float, optional
        Length of the tube [m]
    hl : float, optional
        Liquid-phase heat transfer coefficient as described below, [W/m^2/K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    The liquid-only heat transfer coefficient will be calculated with the
    `laminar_entry_Seider_Tate` correlation, should it not be provided as an
    input. Many of the arguments to this function are optional and are only
    used if `hl` is not provided.

    `hl` should be calculated with a velocity equal to that determined with
    a combined volumetric flow of both the liquid and the gas. All other
    parameters used in calculating the heat transfer coefficient are those
    of the liquid. If the viscosity at the wall temperature is not given, the
    liquid viscosity correction in `laminar_entry_Seider_Tate` is not applied.

    Examples
    --------
    >>> Knott(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6, mu_b=1E-3,
    ... mu_w=1.2E-3, L=4)
    4225.536758045839

    References
    ----------
    .. [1] Knott, R. F., R. N. Anderson, Andreas. Acrivos, and E. E. Petersen.
       "An Experimental Study of Heat Transfer to Nitrogen-Oil Mixtures."
       Industrial & Engineering Chemistry 51, no. 11 (November 1, 1959):
       1369-72. doi:10.1021/ie50599a032.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    Vgs = m * x / (rhog * pi / 4 * D**2)
    Vls = m * (1 - x) / (rhol * pi / 4 * D**2)
    if not hl:
        V = Vgs + Vls  # Net velocity
        Re = Reynolds(V=V, D=D, rho=rhol, mu=mu_b)
        Pr = Prandtl(Cp=Cpl, k=kl, mu=mu_b)
        Nul = laminar_entry_Seider_Tate(Re=Re,
                                        Pr=Pr,
                                        L=L,
                                        Di=D,
                                        mu=mu_b,
                                        mu_w=mu_w)
        hl = Nul * kl / D
    return hl * (1 + Vgs / Vls)**(1 / 3.)
示例#7
0
def Davis_David(m, x, D, rhol, rhog, Cpl, kl, mul):
    r'''Calculates the two-phase non-boiling heat transfer coefficient of a
    liquid and gas flowing inside a tube of any inclination, as in [1]_ and
    reviewed in [2]_.

    .. math::
        \frac{h_{TP} D}{k_l} = 0.060\left(\frac{\rho_L}{\rho_G}\right)^{0.28}
        \left(\frac{DG_{TP} x}{\mu_L}\right)^{0.87}
        \left(\frac{C_{p,L} \mu_L}{k_L}\right)^{0.4}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval [-]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    mul : float
        Viscosity of liquid [Pa*s]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    Developed for both vertical and horizontal flow, and flow patters of
    annular or mist annular flow. Steam-water and air-water were the only
    considered fluid combinations. Quality ranged from 0.1 to 1 in their data.
    [1]_ claimed an AAE of 17%.

    Examples
    --------
    >>> Davis_David(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6,
    ... mul=1E-3)
    1437.3282869955121

    References
    ----------
    .. [1] Davis, E. J., and M. M. David. "Two-Phase Gas-Liquid Convection Heat
       Transfer. A Correlation." Industrial & Engineering Chemistry
       Fundamentals 3, no. 2 (May 1, 1964): 111-18. doi:10.1021/i160010a005.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    G = m / (pi / 4 * D**2)
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    Nu_TP = 0.060 * (rhol / rhog)**0.28 * (D * G * x / mul)**0.87 * Prl**0.4
    return Nu_TP * kl / D
示例#8
0
def Groothuis_Hendal(m,
                     x,
                     D,
                     rhol,
                     rhog,
                     Cpl,
                     kl,
                     mug,
                     mu_b,
                     mu_w=None,
                     water=False):
    r'''Calculates the two-phase non-boiling heat transfer coefficient of a
    liquid and gas flowing inside a tube of any inclination, as in [1]_ and
    reviewed in [2]_.

    .. math::
        Re_M = \frac{D V_{ls} \rho_l}{\mu_l} + \frac{D V_{gs} \rho_g}{\mu_g}

    For the air-water system:

    .. math::
        \frac{h_{TP} D}{k_L} = 0.029 Re_M^{0.87}Pr^{1/3}_l (\mu_b/\mu_w)^{0.14}

    For gas/air-oil systems (default):

    .. math::
        \frac{h_{TP} D}{k_L} = 2.6 Re_M^{0.39}Pr^{1/3}_l (\mu_b/\mu_w)^{0.14}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval [-]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    mug : float
        Viscosity of gas [Pa*s]
    mu_b : float
        Viscosity of liquid at bulk conditions (average of inlet/outlet
        temperature) [Pa*s]
    mu_w : float, optional
        Viscosity of liquid at wall temperature [Pa*s]
    water : bool, optional
        Whether to use the water-air correlation or the gas/air-oil correlation

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    If the viscosity at the wall temperature is not given, the liquid viscosity
    correction is not applied.

    Developed for vertical pipes, with superficial velocity ratios of 0.6-250.
    Tested fluids were air-water, and gas/air-oil.

    Examples
    --------
    >>> Groothuis_Hendal(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6,
    ... mug=1E-5, mu_b=1E-3, mu_w=1.2E-3)
    1192.9543445455754

    References
    ----------
    .. [1] Groothuis, H., and W. P. Hendal. "Heat Transfer in Two-Phase Flow.:
       Chemical Engineering Science 11, no. 3 (November 1, 1959): 212-20.
       doi:10.1016/0009-2509(59)80089-0.
    .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L.
       Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with
       Seven Sets of Experimental Data, Including Flow Pattern and Tube
       Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1,
       1999): 15-40. doi:10.1080/014576399271691.
    '''
    Vg = m * x / (rhog * pi / 4 * D**2)
    Vl = m * (1 - x) / (rhol * pi / 4 * D**2)

    Prl = Prandtl(Cp=Cpl, mu=mu_b, k=kl)
    ReM = D * Vl * rhol / mu_b + D * Vg * rhog / mug

    if water:
        Nu_TP = 0.029 * (ReM)**0.87 * (Prl)**(1 / 3.)
    else:
        Nu_TP = 2.6 * ReM**0.39 * Prl**(1 / 3.)
    if mu_w:
        Nu_TP *= (mu_b / mu_w)**0.14
    return Nu_TP * kl / D
示例#9
0
def Shah(m, x, D, rhol, mul, kl, Cpl, P, Pc):
    r'''Calculates heat transfer coefficient for condensation
    of a fluid inside a tube, as presented in [1]_ and again by the same 
    author in [2]_; also given in [3]_. Requires no properties of the gas.
    Uses the Dittus-Boelter correlation for single phase heat transfer 
    coefficient, with a Reynolds number assuming all the flow is liquid.

    .. math::
        h_{TP} = h_L\left[(1-x)^{0.8} +\frac{3.8x^{0.76}(1-x)^{0.04}}
        {P_r^{0.38}}\right]
    
    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific interval []
    D : float
        Diameter of the channel [m]
    rhol : float
        Density of the liquid [kg/m^3]
    mul : float
        Viscosity of liquid [Pa*s]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]
    P : float
        Pressure of the fluid, [Pa]
    Pc : float
        Critical pressure of the fluid, [Pa]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    [1]_ is well written an unambiguous as to how to apply this equation.

    Examples
    --------
    >>> Shah(m=1, x=0.4, D=.3, rhol=800, mul=1E-5, kl=0.6, Cpl=2300, P=1E6, Pc=2E7)
    2561.2593415479214

    References
    ----------
    .. [1] Shah, M. M. "A General Correlation for Heat Transfer during Film 
       Condensation inside Pipes." International Journal of Heat and Mass 
       Transfer 22, no. 4 (April 1, 1979): 547-56. 
       doi:10.1016/0017-9310(79)90058-9. 
    .. [2] Shah, M. M., Heat Transfer During Film Condensation in Tubes and 
       Annuli: A Review of the Literature, ASHRAE Transactions, vol. 87, no. 
       3, pp. 1086-1100, 1981.
    .. [3] Kakaç, Sadik, ed. Boilers, Evaporators, and Condensers. 1st. 
       Wiley-Interscience, 1991.
    '''
    VL = m / (rhol * pi / 4 * D**2)
    ReL = Reynolds(V=VL, D=D, rho=rhol, mu=mul)
    Prl = Prandtl(Cp=Cpl, k=kl, mu=mul)
    hL = turbulent_Dittus_Boelter(ReL, Prl) * kl / D
    Pr = P / Pc
    h_TP = hL * ((1 - x)**0.8 + 3.8 * x**0.76 * (1 - x)**0.04 / Pr**0.38)
    return h_TP
示例#10
0
def Cavallini_Smith_Zecchin(m, x, D, rhol, rhog, mul, mug, kl, Cpl):
    r'''Calculates heat transfer coefficient for condensation
    of a fluid inside a tube, as presented in
    [1]_, also given in [2]_ and [3]_.

    .. math::
        Nu = \frac{hD_i}{k_l} = 0.05 Re_e^{0.8} Pr_l^{0.33}
        
        Re_{eq} = Re_g(\mu_g/\mu_l)(\rho_l/\rho_g)^{0.5} + Re_l

        v_{gs} = \frac{mx}{\rho_g \frac{\pi}{4}D^2}

        v_{ls} = \frac{m(1-x)}{\rho_l \frac{\pi}{4}D^2}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific interval []
    D : float
        Diameter of the channel [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    mul : float
        Viscosity of liquid [Pa*s]
    mug : float
        Viscosity of gas [Pa*s]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    Cpl : float
        Constant-pressure heat capacity of liquid [J/kg/K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----

    Examples
    --------
    >>> Cavallini_Smith_Zecchin(m=1, x=0.4, D=.3, rhol=800, rhog=2.5, mul=1E-5, mug=1E-3, kl=0.6, Cpl=2300)
    5578.218369177804
    
    References
    ----------
    .. [1] A. Cavallini, J. R. Smith and R. Zecchin, A dimensionless correlation
       for heat transfer in forced convection condensa- tion, 6th International 
       Heat Transfer Conference., Tokyo, Japan (1974) 309-313. 
       http://www.ibrarian.net/navon/paper/A_Dimensionless_Correlation_for_Heat_Transfer_in_.pdf?paperid=4413524
    .. [2] Kakaç, Sadik, ed. Boilers, Evaporators, and Condensers. 1st. 
       Wiley-Interscience, 1991.
    .. [3] Balcılar, Muhammet, Ahmet Selim Dalkılıç, Berna Bolat, and Somchai 
       Wongwises. "Investigation of Empirical Correlations on the Determination
       of Condensation Heat Transfer Characteristics during Downward Annular 
       Flow of R134a inside a Vertical Smooth Tube Using Artificial 
       Intelligence Algorithms." Journal of Mechanical Science and Technology 
       25, no. 10 (October 12, 2011): 2683-2701. doi:10.1007/s12206-011-0618-2.
    '''
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    Vl = m * (1 - x) / (rhol * pi / 4 * D**2)
    Vg = m * x / (rhog * pi / 4 * D**2)
    Rel = Reynolds(V=Vl, D=D, rho=rhol, mu=mul)
    Reg = Reynolds(V=Vg, D=D, rho=rhog, mu=mug)
    '''The following was coded, and may be used instead of the above lines,
    to check that the definitions of parameters here provide the same results
    as those defined in [1]_.
    G = m/(pi/4*D**2)
    Re = G*D/mul
    Rel = Re*(1-x)
    Reg = Re*x/(mug/mul)'''
    Reeq = Reg * (mug / mul) * (rhol / rhog)**0.5 + Rel
    Nul = 0.05 * Reeq**0.8 * Prl**0.33
    h = Nul * kl / D  # confirmed to be with respect to the liquid
    return h