示例#1
0
def main():

    # -- INITIALIZATION STAGE
    # ... DEFINE SIMULATION PARAMETERS
    t_max = 3000.       # (fs)
    t_num = 2**14       # (-)
    z_max = 8.0e3       # (micron)
    z_num = 10000       # (-)
    z_skip = 10         # (-)
    n2 = 3.0e-8         # (micron^2/W)
    wS = 1.884          # (rad/fs)
    tS = 10.0           # (fs)
    NS = 10.            # (-)
    # ... PROPAGGATION CONSTANT
    beta_fun = define_beta_fun_NLPM750()
    pc = PropConst(beta_fun)
    # ... COMPUTATIONAL DOMAIN, MODEL, AND SOLVER 
    grid = Grid( t_max = t_max, t_num = t_num, z_max = z_max, z_num = z_num)
    model = FMAS_S_R(w=grid.w, beta_w=pc.beta(grid.w), n2 = n2)
    solver = IFM_RK4IP( model.Lw, model.Nw)

    # -- SET UP INITIAL CONDITION
    A0 = NS*np.sqrt(np.abs(pc.beta2(wS))*model.c0/wS/n2)/tS
    Eps_0w = AS(np.real(A0/np.cosh(grid.t/tS)*np.exp(1j*wS*grid.t))).w_rep
    solver.set_initial_condition( grid.w, Eps_0w)

    # -- PERFORM Z-PROPAGATION
    solver.propagate( z_range = z_max, n_steps = z_num, n_skip = z_skip)

    # -- SHOW RESULTS
    utz = change_reference_frame(solver.w, solver.z, solver.uwz, pc.vg(wS))
    plot_evolution( solver.z, grid.t, utz,
        t_lim = (-100,100), w_lim = (0.5,8.), DO_T_LOG = True)
def main():

    # -- DEFINE SIMULATION PARAMETERS
    # ... COMPUTATIONAL DOMAIN
    t_max = 4000.       # (fs)
    t_num = 2**14       # (-)
    z_max = 6.0e6       # (micron)
    z_num = 75000       # (-)
    z_skip=   100       # (-)
    n2 = 3.0e-8         # (micron^2/W)

    beta_fun = define_beta_fun_ESM()
    pc = PropConst(beta_fun)

    # -- INITIALIZATION STAGE
    grid = Grid( t_max = t_max, t_num = t_num, z_max = z_max, z_num = z_num)

    #print(grid.dz)
    #exit()
    model = FMAS_S_Raman(w=grid.w, beta_w=pc.beta(grid.w), n2=n2)
    solver = IFM_RK4IP( model.Lw, model.Nw, user_action = model.claw)

    # -- SET UP INITIAL CONDITION
    t = grid.t
    # ... FUNDAMENTAL NSE SOLITON
    w0_S, t0_S = 1.5, 20.   # (rad/fs), (fs)
    A0 = np.sqrt(abs(pc.beta2(w0_S))*model.c0/w0_S/n2)/t0_S
    A0_S = A0/np.cosh(t/t0_S)*np.exp(1j*w0_S*t)
    # ... 1ST DISPERSIVE WAVE; UNITS (rad/fs), (fs), (fs), (-)
    w0_DW1, t0_DW1, t_off1, s1 = 2.06, 60., -600., 0.35
    A0_DW1 = s1*A0/np.cosh((t-t_off1)/t0_DW1)*np.exp(1j*w0_DW1*t)
    # ... 2ND DISPERSIVE WAVE; UNITS (rad/fs), (fs), (fs), (-)
    w0_DW2, t0_DW2, t_off2, s2 = 2.05, 60., -1200., 0.35
    A0_DW2 = s2*A0/np.cosh((t-t_off2)/t0_DW2)*np.exp(1j*w0_DW2*t)
    # ... 3RD DISPERSIVE WAVE; UNITS (rad/fs), (fs), (fs), (-)
    w0_DW3, t0_DW3, t_off3, s3 = 2.04, 60., -1800., 0.35
    A0_DW3 = s3*A0/np.cosh((t-t_off3)/t0_DW3)*np.exp(1j*w0_DW3*t)
    # ... ANALYTIC SIGNAL OF FULL ININITIAL CONDITION
    Eps_0w = AS(np.real(A0_S + A0_DW1 + A0_DW2 + A0_DW3)).w_rep

    solver.set_initial_condition( grid.w, Eps_0w)
    solver.propagate( z_range = z_max, n_steps = z_num, n_skip = z_skip)

    # -- SHOW RESULTS
    v0 = pc.vg(w0_S)
    utz = change_reference_frame(solver.w, solver.z, solver.uwz, v0)

    res = {
        't': grid.t,
        'w': grid.w,
        'z': solver.z,
        'v0': pc.vg(w0_S),
        'utz': utz,
        'Cp': solver.ua_vals
    }

    save_h5('out_file_HR.h5', **res)
示例#3
0
def main():

    # -- INITIALIZATION STAGE
    # ... DEFINE SIMULATION PARAMETERS
    t_max = 3500. / 2  # (fs)
    t_num = 2**14  # (-)
    z_max = 50.0e3  # (micron)
    z_num = 100000  # (-)
    z_skip = 100  # (-)
    c0 = 0.29979  # (micron/fs)
    n2 = 1.  # (micron^2/W) FICTITIOUS VALUE ONLY
    wS = 2.32548  # (rad/fs)
    tS = 50.0  # (fs)
    NS = 3.54  # (-)
    # ... PROPAGGATION CONSTANT
    beta_fun = define_beta_fun_fluoride_glass_AD2010()
    pc = PropConst(beta_fun)
    chi = (8. / 3) * pc.beta(wS) * c0 / wS * n2

    # ... COMPUTATIONAL DOMAIN, MODEL, AND SOLVER
    grid = Grid(t_max=t_max, t_num=t_num, z_max=z_max, z_num=z_num)
    model = BMCF(w=grid.w, beta_w=pc.beta(grid.w), chi=chi)
    solver = IFM_RK4IP(model.Lw, model.Nw)

    # -- SET UP INITIAL CONDITION
    LD = tS * tS / np.abs(pc.beta2(wS))
    A0 = NS * np.sqrt(8 * c0 / wS / n2 / LD)
    Eps_0w = AS(np.real(A0 / np.cosh(grid.t / tS) *
                        np.exp(1j * wS * grid.t))).w_rep
    solver.set_initial_condition(grid.w, Eps_0w)

    # -- PERFORM Z-PROPAGATION
    solver.propagate(z_range=z_max, n_steps=z_num, n_skip=z_skip)

    # -- SHOW RESULTS
    utz = change_reference_frame(solver.w, solver.z, solver.uwz, pc.vg(wS))
    plot_evolution(solver.z,
                   grid.t,
                   utz,
                   t_lim=(-500, 500),
                   w_lim=(-10., 10.),
                   DO_T_LOG=True,
                   ratio_Iw=1e-15)
def main():

    # -- DEFINE SIMULATION PARAMETERS
    # ... COMPUTATIONAL DOMAIN
    t_max = 2000.  # (fs)
    t_num = 2**13  # (-)
    z_max = 1.0e6  # (micron)
    z_num = 10000  # (-)
    z_skip = 10  # (-)
    n2 = 3.0e-8  # (micron^2/W)
    c0 = 0.29979  # (fs/micron)
    lam0 = 0.860  # (micron)
    w0_S = 2 * np.pi * c0 / lam0  # (rad/fs)
    t0_S = 20.0  # (fs)
    w0_DW = 2.95  # (rad/fs)
    t0_DW = 70.0  # (fs)
    t_off = -250.0  # (fs)
    sFac = 0.75  # (-)

    beta_fun = define_beta_fun_poly_NLPM750()
    pc = PropConst(beta_fun)

    # -- INITIALIZATION STAGE
    grid = Grid(t_max=t_max, t_num=t_num, z_max=z_max, z_num=z_num)
    model = FMAS_S_R(w=grid.w, beta_w=pc.beta(grid.w), n2=n2)
    solver = IFM_RK4IP(model.Lw, model.Nw, user_action=model.claw)

    # -- SET UP INITIAL CONDITION
    t = grid.t
    A0 = np.sqrt(abs(pc.beta2(w0_S)) * c0 / w0_S / n2) / t0_S
    A0_S = A0 / np.cosh(t / t0_S) * np.exp(1j * w0_S * t)
    A0_DW = sFac * A0 / np.cosh((t - t_off) / t0_DW) * np.exp(1j * w0_DW * t)
    Eps_0w = AS(np.real(A0_S + A0_DW)).w_rep
    solver.set_initial_condition(grid.w, Eps_0w)
    solver.propagate(z_range=z_max, n_steps=z_num, n_skip=z_skip)

    # -- SHOW RESULTS
    utz = change_reference_frame(solver.w, solver.z, solver.uwz, pc.vg(w0_S))
    plot_evolution(solver.z,
                   grid.t,
                   utz,
                   t_lim=(-1200, 1200),
                   w_lim=(1.8, 3.2))
示例#5
0
from fmas.solver import IFM_RK4IP
from fmas.analytic_signal import AS
from fmas.grid import Grid
from fmas.propagation_constant import PropConst, define_beta_fun_ESM
from fmas.tools import sech, change_reference_frame, plot_claw

beta_fun = define_beta_fun_ESM()
pc = PropConst(beta_fun)

grid = Grid(t_max=5500.0, t_num=2**14)  # (fs)  # (-)

Ns = 8.0  # (-)
t0 = 7.0  # (fs)
w0 = 1.7  # (rad/fs)
n2 = 3.0e-8  # (micron^2/W)
A0 = Ns * np.sqrt(abs(pc.beta2(w0)) * pc.c0 / w0 / n2) / t0
E_0t_fun = lambda t: np.real(A0 * sech(t / t0) * np.exp(1j * w0 * t))
Eps_0w = AS(E_0t_fun(grid.t)).w_rep

###############################################################################
# As model we here consider the simplified forward model for the analytic
# signal (FMAS_S)

from fmas.models import FMAS_S
model = FMAS_S(w=grid.w, beta_w=pc.beta(grid.w), n2=n2)

###############################################################################
# For the FMAS_S :math:`z`-propagation model we consider a conserved quantity
# that is related to the classical analog of the photon number, see Eq. (24) of
# [AD2010] and the appendix of [BW1989]. In particular we here implement
#
示例#6
0
grid = Grid(
    t_max=4500.,  # (fs)
    t_num=2**14  # (-)
)

model = ZBLAN(grid.w, fR=0.0)

###############################################################################
# To visually assess the group-velocity (GV) and group-velocity dispersion
# (GVD) of the propagation constant in the relevant angular frequency range we
# use the convenience class `PropConst` and pre-implemented plotting functions
# that are implemented in module `tools`

w = grid.w[np.logical_and(grid.w > 0.5, grid.w < 5.)]
pc = PropConst(model.beta_fun)
plot_details_prop_const(w, pc.vg(w), pc.beta2(w))

###############################################################################
# Next, we prepare the corresponding initial condition, which is well described
# in Ref. [3].  It consists of a fundamental soliton with duration
# :math:`t_{\rm{S}}=25.2\,\mathrm{fs}` and center frequency
# :math:`\omega_{\rm{S}}=0.4709\,\mathrm{rad/fs}`, and a dispersive wave with
# duration :math:`t_{\rm{DW}}=100\,\mathrm{fs}` and angular frequency
# :math:`\omega_{\rm{DW}}=2.6177\,\mathrm{rad/fs}`.  Both pulses exhibit an
# amplitude ratio of :math:`A_{\rm{DW}}/A_{\rm{S}}=0.566`, and the soliton is
# launched with  deltay :math:`t_{\rm{off}}=450\,\mathrm{fs}`.

wS, tS = 0.4709, 25.2  # (rad/fs), (fs)
wDW, tDW = 2.6177, 100.  # (rad/fs), (fs)
t_off = -450.  # (fs)
rDW = 0.566  # (-)
示例#7
0
# cooresponding instance of the `PropConst` convenience class, wrapping the
# function `beta_fun`.

beta_fun = define_beta_fun_NLPM750()
pc = PropConst(beta_fun)

###############################################################################
# We then visually assess the group-velocity (GV) and group-velocity dispersion
# (GVD) of the propagation constant in the angular frequency range
# :math:`\omega \in [1.2,3.2]~\mathrm{rad/fs}`.  GV and GVD are implemented by
# the class methods `vg`, and `beta2`, respectively.  To generate a quick plot
# of both, the GV and GVD, we use the function `plot_details_prop_const`, which
# is defined in module `tools`.

w = np.linspace(1.3, 3.2, 200)
plot_details_prop_const(w, pc.vg(w), pc.beta2(w))

###############################################################################
# Finding zero-dispersion points
# ------------------------------
#
# A quick visual assessment of the GVD in the bottom subfigure allows to
# roughly locate the first zero-dispersion point within the angular frequency
# interval :math:`[1.4,1.7]~\mathrm{rad/fs}`.  The second zero-dispersion point
# surely falls into the interval :math:`[2.2,2.5]~\mathrm{rad/fs}`.  From these
# rough estimates we can determine the exact roots of :math:`\beta_2` as shown
# below:

w_Z1 = pc.find_root_beta2(1.4, 1.7)
w_Z2 = pc.find_root_beta2(2.2, 2.5)
示例#8
0
# propagation constant and generate an instance of the `PropConst` convenience
# class.

beta_fun = define_beta_fun_ESM()
pc = PropConst(beta_fun)

###############################################################################
# The group-velocity (GV) and group-velocity dispersion (GVD) of the ESM
# propagation constant in the angular frequency range :math:`\omega \in
# [1.2,3.2]~\mathrm{rad/fs}` can then be visualized using build in `py-fmas`
# functions.  GV and GVD are implemented by the class methods `vg`, and
# `beta2`, respectively.  To generate a quick plot of both, we use the function
# `plot_details_prop_const`, which is defined in module `tools`.

w_tmp = np.linspace(1., 3.5, 400)
plot_details_prop_const(w_tmp, pc.vg(w_tmp), pc.beta2(w_tmp))

###############################################################################
# We next define the simulation parameters that specify the computational
# domain

grid = Grid(
    t_max=5500.,  # (fs)
    t_num=2**14  # (-)
)

###############################################################################
# After the computational domain is specified, we define the simulation
# parameters that are needed to specify the :math:`z`-propagation model.
# Below, we use the simplified forward model for the analytic signal including
# the Raman effect [3]
示例#9
0
from fmas.grid import Grid
from fmas.propagation_constant import PropConst, define_beta_fun_ESM
from fmas.tools import sech, change_reference_frame, plot_claw

beta_fun = define_beta_fun_ESM()
pc = PropConst(beta_fun)

grid = Grid(t_max=5500.0, t_num=2**14)  # (fs)  # (-)

Ns = 8.0  # (-)
t0 = 7.0  # (fs)
w0 = 1.7  # (rad/fs)
n2 = 3.0e-8  # (micron^2/W)
chi = 8.0 * n2 * pc.beta(w0) * pc.c0 / w0 / 3.0
gam0 = 3 * w0 * w0 * chi / (8 * pc.c0 * pc.c0 * pc.beta(w0))
A0 = Ns * np.sqrt(abs(pc.beta2(w0)) / gam0) / t0
E_0t_fun = lambda t: np.real(A0 * sech(t / t0) * np.exp(1j * w0 * t))
Eps_0w = AS(E_0t_fun(grid.t)).w_rep

###############################################################################
# As model we here consider the forward model for the analytic signal (FMAS)

from fmas.models import FMAS
model = FMAS(w=grid.w, beta_w=pc.beta(grid.w), chi=chi)

###############################################################################
# For the FMAS :math:`z`-propagation model we consider a conserved quantity
# that is related to the classical analog of the photon number, see Eq. (24) of
# Ref. [AD2010] below. In particular we here implement
#
# .. math::