示例#1
0
def toOsgr(latlon, lon=None, datum=Datums.WGS84, Osgr=Osgr):
    '''Convert a lat-/longitude point to an OSGR coordinate.

       @param latlon: Latitude (degrees) or an (ellipsoidal)
                      geodetic I{LatLon} point.
       @keyword lon: Optional longitude in degrees (scalar or None).
       @keyword datum: Optional datum to convert (I{Datum}).
       @keyword Osgr: Optional Osgr class to use for the
                      OSGR coordinate (L{Osgr}).

       @return: The OSGR coordinate (L{Osgr}).

       @raise TypeError: If I{latlon} is not ellipsoidal or if
                         I{datum} conversion failed.

       @raise ValueError: Invalid I{latlon} or I{lon}.

       @example:

       >>> p = LatLon(52.65798, 1.71605)
       >>> r = toOsgr(p)  # TG 51409 13177
       >>> # for conversion of (historical) OSGB36 lat-/longitude:
       >>> r = toOsgr(52.65757, 1.71791, datum=Datums.OSGB36)
    '''
    if not isinstance(latlon, _eLLb):
        # XXX fix failing _eLLb.convertDatum()
        latlon = _eLLb(*parseDMS2(latlon, lon), datum=datum)
    elif lon is not None:
        raise ValueError('%s not %s: %r' % ('lon', None, lon))

    E = _OSGB36.ellipsoid

    ll = _ll2datum(latlon, _OSGB36, 'latlon')
    a, b = map1(radians, ll.lat, ll.lon)

    ca, sa, ta = cos(a), sin(a), tan(a)

    s = E.e2s2(sa)
    v = E.a * _F0 / sqrt(s)  # nu
    r = s / E.e12  # nu / rho == v / (v * E.e12 / s)

    x2 = r - 1  # η2

    ca3, ca5 = fpowers(ca, 5, 3)  # PYCHOK false!
    ta2, ta4 = fpowers(ta, 4, 2)  # PYCHOK false!

    vsa = v * sa
    I4 = (E.b * _F0 * _M(E.Mabcd, a) + _N0, (vsa / 2) * ca,
          (vsa / 24) * ca3 * fsum_(5, -ta2, 9 * x2),
          (vsa / 720) * ca5 * fsum_(61, ta4, -58 * ta2))

    V4 = (_E0, (v * ca), (v / 6) * ca3 * (r - ta2), (v / 120) * ca5 * fdot(
        (-18, 1, 14, -58), ta2, 5 + ta4, x2, ta2 * x2))

    d, d2, d3, d4, d5, d6 = fpowers(b - _B0, 6)  # PYCHOK false!
    n = fdot(I4, 1, d2, d4, d6)
    e = fdot(V4, 1, d, d3, d5)

    return Osgr(e, n)
示例#2
0
    def toLatLon(self, LatLon=None, datum=Datums.WGS84):
        '''Convert this OSGR coordinate to an (ellipsoidal) geodetic
           point.

           I{Note formulation implemented here due to Thomas, Redfearn,
           etc. is as published by OS, but is inferior to Krüger as
           used by e.g. Karney 2011.}

           @keyword LatLon: Optional ellipsoidal LatLon class to use
                            for the point (I{LatLon}).
           @keyword datum: Optional datum to use (I{Datum}).

           @return: The geodetic point (I{LatLon}) or 3-tuple (lat,
                    lon, datum) if I{LatLon} is None.

           @raise TypeError: If I{LatLon} is not ellipsoidal or if
                             I{datum} conversion failed.

           @example:

           >>> from pygeodesy import ellipsoidalVincenty as eV
           >>> g = Osgr(651409.903, 313177.270)
           >>> p = g.toLatLon(eV.LatLon)  # 52°39′28.723″N, 001°42′57.787″E
           >>> # to obtain (historical) OSGB36 lat-/longitude point
           >>> p = g.toLatLon(eV.LatLon, datum=Datums.OSGB36)  # 52°39′27.253″N, 001°43′04.518″E
        '''
        if self._latlon:
            return self._latlon3(LatLon, datum)

        E = _OSGB36.ellipsoid  # Airy130
        a_F0 = E.a * _F0
        b_F0 = E.b * _F0

        e, n = self._easting, self._northing
        n_N0 = n - _N0

        a, M = _A0, 0
        sa = Fsum(a)
        while True:
            t = n_N0 - M
            if t < _10um:
                break
            sa.fadd(t / a_F0)
            a = sa.fsum()
            M = b_F0 * _M(E.Mabcd, a)

        ca, sa, ta = cos(a), sin(a), tan(a)

        s = E.e2s2(sa)
        v = a_F0 / sqrt(s)  # nu
        r = v * E.e12 / s  # rho

        vr = v / r  # == s / E.e12
        x2 = vr - 1  # η2

        v3, v5, v7 = fpowers(v, 7, 3)  # PYCHOK false!
        ta2, ta4, ta6 = fpowers(ta**2, 3)  # PYCHOK false!

        tar = ta / r
        V4 = (a, tar / (2 * v), tar / (24 * v3) * fdot(
            (1, 3, -9), 5 + x2, ta2, ta2 * x2), tar / (720 * v5) * fdot(
                (61, 90, 45), 1, ta2, ta4))

        csa = 1.0 / ca
        X5 = (_B0, csa / v, csa / (6 * v3) * fsum_(vr, ta, ta),
              csa / (120 * v5) * fdot(
                  (5, 28, 24), 1, ta2, ta4), csa / (5040 * v7) * fdot(
                      (61, 662, 1320, 720), ta, ta2, ta4, ta6))

        d, d2, d3, d4, d5, d6, d7 = fpowers(e - _E0, 7)  # PYCHOK false!
        a = fdot(V4, 1, -d2, d4, -d6)
        b = fdot(X5, 1, d, -d3, d5, -d7)

        self._latlon = _eLLb(degrees90(a), degrees180(b), datum=_OSGB36)
        return self._latlon3(LatLon, datum)
示例#3
0
def toOsgr(latlon, lon=None, datum=Datums.WGS84, Osgr=Osgr, name=''):
    '''Convert a lat-/longitude point to an OSGR coordinate.

       @param latlon: Latitude (C{degrees}) or an (ellipsoidal)
                      geodetic C{LatLon} point.
       @keyword lon: Optional longitude in degrees (scalar or C{None}).
       @keyword datum: Optional datum to convert (C{Datum}).
       @keyword Osgr: Optional (sub-)class to return the OSGR
                      coordinate (L{Osgr}) or C{None}.
       @keyword name: Optional I{Osgr} name (C{str}).

       @return: The OSGR coordinate (L{Osgr}) or 2-tuple (easting,
                northing) if I{Osgr} is C{None}.

       @raise TypeError: Non-ellipsoidal I{latlon} or I{datum}
                         conversion failed.

       @raise ValueError: Invalid I{latlon} or I{lon}.

       @example:

       >>> p = LatLon(52.65798, 1.71605)
       >>> r = toOsgr(p)  # TG 51409 13177
       >>> # for conversion of (historical) OSGB36 lat-/longitude:
       >>> r = toOsgr(52.65757, 1.71791, datum=Datums.OSGB36)
    '''
    if not isinstance(latlon, _LLEB):
        # XXX fix failing _LLEB.convertDatum()
        latlon = _LLEB(*parseDMS2(latlon, lon), datum=datum)
    elif lon is not None:
        raise ValueError('%s not %s: %r' % ('lon', None, lon))
    elif not name:  # use latlon.name
        name = _nameof(latlon) or name  # PYCHOK no effect

    E = _OSGB36.ellipsoid

    ll = _ll2datum(latlon, _OSGB36, 'latlon')
    a, b = map1(radians, ll.lat, ll.lon)

    sa, ca = sincos2(a)

    s = E.e2s2(sa)
    v = E.a * _F0 / sqrt(s)  # nu
    r = s / E.e12  # nu / rho == v / (v * E.e12 / s)

    x2 = r - 1  # η2
    ta = tan(a)

    ca3, ca5 = fpowers(ca, 5, 3)  # PYCHOK false!
    ta2, ta4 = fpowers(ta, 4, 2)  # PYCHOK false!

    vsa = v * sa
    I4 = (E.b * _F0 * _M(E.Mabcd, a) + _N0, (vsa / 2) * ca,
          (vsa / 24) * ca3 * fsum_(5, -ta2, 9 * x2),
          (vsa / 720) * ca5 * fsum_(61, ta4, -58 * ta2))

    V4 = (_E0, (v * ca), (v / 6) * ca3 * (r - ta2), (v / 120) * ca5 * fdot(
        (-18, 1, 14, -58), ta2, 5 + ta4, x2, ta2 * x2))

    d, d2, d3, d4, d5, d6 = fpowers(b - _B0, 6)  # PYCHOK false!
    n = fdot(I4, 1, d2, d4, d6)
    e = fdot(V4, 1, d, d3, d5)

    return (e, n) if Osgr is None else _xnamed(Osgr(e, n), name)