from sklearn.cross_validation import StratifiedKFold from sklearn.cross_validation import cross_val_score from sklearn.cross_validation import LeaveOneLabelOut from sklearn.cross_validation import permutation_test_score from sklearn.pipeline import Pipeline from sklearn.dummy import DummyClassifier from nilearn.input_data import NiftiMasker import numpy as np import fmriUtils as fm n_folds = 10 f=fm.outTo() X,y = fm.loadData() y = fm.defineClass(y) XX = X yy = y #使用SVM分类和预测 svc = SVC(kernel='linear') # feature_selection = SelectKBest(f_classif, k=1000) anova_svc = Pipeline([('anova', feature_selection), ('svc', svc)]) cv = StratifiedKFold(yy, n_folds=n_folds) cv_scores = [] for train, test in cv: anova_svc.fit(XX[train], yy[train])
from sklearn.svm import LinearSVC from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import StratifiedKFold from sklearn.utils.extmath import density from sklearn import metrics root = r"D:\data_processing\Python" n_folds = 5 os.chdir(root) X = np.load('X.npy') y = np.load('y.npy') y = fm.defineClass(y,according='noise') f = fm.outTo() #===========特征选择======================== clf_l1_LR = LogisticRegression(C=0.1, penalty='l1', tol=0.001) clf_l1_LR.fit(X, y) print clf_l1_LR model = SelectFromModel(clf_l1_LR, prefit=True) X = model.transform(X) results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="sag"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
""" Created on Tue Jul 26 15:05:41 2016 @author: FF120 """ import os import numpy as np import fmriUtils as fm from matplotlib import pyplot as plt from matplotlib import font_manager root = r"D:\data_processing\Python" os.chdir(root) X = np.load('X.npy') y = np.load('y.npy') y = fm.defineClass(y) zhfont = matplotlib.font_manager.FontProperties(fname='/usr/share/fonts/truetype/arphic/ukai.ttc') """ 比较好看的绘制方法 """ plt.figure(figsize=(8, 5), dpi=80) axes = plt.subplot(111) type1_x = [] type1_y = [] type2_x = [] type2_y = [] type3_x = [] type3_y = [] type4_x = [] type4_y = []
from sklearn.svm import LinearSVC from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import StratifiedKFold from sklearn.utils.extmath import density from sklearn import metrics root = r"D:\data_processing\Python" n_folds = 5 os.chdir(root) X = np.load('X.npy') y = np.load('y.npy') y = fm.defineClass(y, according='noise') f = fm.outTo() #===========特征选择======================== clf_l1_LR = LogisticRegression(C=0.1, penalty='l1', tol=0.001) clf_l1_LR.fit(X, y) print clf_l1_LR model = SelectFromModel(clf_l1_LR, prefit=True) X = model.transform(X) results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="sag"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"),