def plot_components_PLSR(event):
    run = PLSR.run
    if not run.ui['reg_type'] == 'PLSR':
        return
    """Function for making plots of the latent variables from PLSR. """
    ui = run.ui
    ui['fig_per_row'] = int(run.frame.buttons['fig_per_row'].get())
    ui['max_plots'] = int(run.frame.buttons['max_plots'].get())
    common_variables = run.common_variables
    reg_module = run.last_reg_module
    latent_variables = np.swapaxes(reg_module.x_weights_, 0, 1)
    #print("this is working")last_reg_module
    #print(latent_variables.shape)
    ui = run.ui
    wavenum = run.last_complete_case.wavenumbers
    if ui['save_check_var']:
        tempax = common_variables.tempax
        tempfig = common_variables.tempfig
    for i, latent_variable in enumerate(latent_variables):
        ax = fns.add_axis(common_variables.fig, ui['fig_per_row'],
                          ui['max_plots'])
        yax_label = 'Latent variable ' + str(i + 1)
        PLSRsave.plot_component(ax, ui, wavenum, yax_label, latent_variable)
        run.draw()
        if ui['save_check_var']:
            tempax.cla()
            PLSRsave.plot_component(tempax, ui, wavenum, yax_label,
                                    latent_variable)
            plotFileName = run.filename + '/PLSR latent variable ' + str(i + 1)
            tempfig.savefig(
                plotFileName.replace('.', 'p') + ui['file_extension'])
    return
示例#2
0
    def run(self):
        self.fig.clf()
        ax = fns.add_axis(self.fig, 1)
        numPulses = 100
        #self.average_pulses=[]
        self.ms = [255]
        for i, n in enumerate(self.ms):
            average_2_pulses = averageN(self.pulseIntensity, n)
        self.plot_me(ax, numPulses)

        if self.frame.save_check_var.get():
            tempfig = self.frame.hidden_figure
            tempfig.set_size_inches(4 * 1.2, 3 * 1.2)
            tempfig.set_dpi(300)
            tempfig.clf()
            tempax = tempfig.add_subplot(1, 1, 1)
            tempfig.subplots_adjust(bottom=0.17,
                                    left=0.16,
                                    right=0.97,
                                    top=0.97)
            self.plot_me(tempax, numPulses)

            filename = self.frame.name_field_string.get()
            tempfig.savefig(filename + '.png')
            tempfig.savefig(filename + '.svg')
        #ax2=fns.add_axis(self.fig,1)
        #average_2_pulses=averageN(self.pulseIntensity,8)
        #ax2.scatter(range(len(average_2_pulses)),average_2_pulses)
        #if self.ui['save_check']:
        #	self.fig.savefig(self.ui['save_filename']+'.png')
        return
示例#3
0
    def run(self):
        self.fig.clf()
        ax = fns.add_axis(self.fig, 1)
        StartWL = 1200
        EndWL = 925
        minscanlength = np.inf
        for scan in self.scans:
            if len(scan) < minscanlength:
                minscanlength = len(scan)
        for i, scan in enumerate(self.scans):
            self.scans[i] = scan[0:minscanlength]
            n = 255
            self.scans[i] = averageN(self.scans[i], n)
        self.scans = np.array(self.scans)
        self.averagescans = np.average(self.scans, axis=0)

        for i, scan in enumerate(self.scans):
            self.scans[i] = scan / self.averagescans
        for i, scan in enumerate(self.scans):
            if i > 0:
                s = signal_alignment.chisqr_align(self.scans[0],
                                                  scan, [0, 20000],
                                                  init=0,
                                                  bound=50)
                print(s)
                self.scans[i] = signal_alignment.shift(scan, s, mode='nearest')
        #StartWL=1200
        #EndWL=925
        #self.wavenumbers=StartWL+(EndWL-StartWL)*np.arange(minscanlength)/minscanlength
        StartWL = 1200
        EndWL = 925
        self.wavenumbers = StartWL + (
            EndWL - StartWL) * np.arange(minscanlength) / minscanlength
        numPulses = 1000
        step = 100
        self.ms = [1, 2, 5, 10]
        self.averaged_scans = []
        for i, m in enumerate(self.ms):
            self.averaged_scans.append(copy.deepcopy(self.scans))
            self.averaged_scans[-1] = averageM(self.averaged_scans[-1], m)
        self.plot_me(ax, step, numPulses, EndWL, StartWL)

        if self.frame.save_check_var.get():
            tempfig = self.frame.hidden_figure
            tempfig.set_size_inches(4 * 1.2, 3 * 1.2)
            tempfig.set_dpi(300)
            tempfig.clf()
            tempax = tempfig.add_subplot(1, 1, 1)
            tempfig.subplots_adjust(bottom=0.17,
                                    left=0.16,
                                    right=0.97,
                                    top=0.97)
            self.plot_me(tempax, step, numPulses, EndWL, StartWL)

            filename = self.frame.name_field_string.get()
            tempfig.savefig(filename + '.png')
            tempfig.savefig(filename + '.svg')
        return
示例#4
0
def get_or_make_absorbance_ax(run):
	ui=run.ui
	ui['fig_per_row']=int(run.frame.buttons['fig_per_row'].get())
	ui['max_plots']=int(run.frame.buttons['max_plots'].get())
	wavenumbers=run.original_wavenumbers
	common_variables=run.common_variables
	fig=common_variables.fig
	for ax in fig.axes:
		if hasattr(ax,'plot_type') and ax.plot_type=='absorbance':
			return ax
	ax=fns.add_axis(fig,ui['fig_per_row'],ui['max_plots'])
	datapoints=common_variables.datapoints
	PlotAbsorbance(ax,fig,datapoints,ui,wavenumbers,common_variables.original_T.X,common_variables.original_V.X)
	ax.plot_type='absorbance'
	return ax
def plot_feature_importance(event):
    run = PLSR.run
    if not run.ui['reg_type'] == 'Tree':
        return
    """Function for plotting the feature importance of features in the Random
	Forest Regressor. Feature importance is shown in a plot overlaying the
	data plot. The feature importance is also saved in a separate plot if the
	"Save" option is selected."""
    feature_importance = run.last_reg_module.regr.feature_importances_
    common_variables = run.common_variables
    wavenum = run.last_complete_case.wavenumbers
    ui = run.ui
    ui['fig_per_row'] = int(run.frame.buttons['fig_per_row'].get())
    ui['max_plots'] = int(run.frame.buttons['max_plots'].get())
    ax = PLSRsave.get_or_make_absorbance_ax(run)
    PLSRsave.add_feature_importance_twinx(ax, common_variables, ui, xax,
                                          feature_importance)
    ax = fns.add_axis(common_variables.fig, ui['fig_per_row'], ui['max_plots'])
    PLSRsave.plot_feature_importance(ax, common_variables, ui, xax,
                                     feature_importance)
    if ui['save_check_var']:
        tempax = common_variables.tempax
        tempfig = common_variables.tempfig
        common_variables.tempfig.subplots_adjust(bottom=0.13,
                                                 left=0.15,
                                                 right=0.85,
                                                 top=0.97)
        PLSRsave.PlotAbsorbance(tempax, tempfig,
                                run.last_complete_case.active_wavenumers, ui,
                                wavenumbers, common_variables.original_T.X,
                                common_variables.original_V.X)
        twinx = PLSRsave.add_feature_importance_twinx(tempax, common_variables,
                                                      run.ui, xax,
                                                      feature_importance)
        plotFileName = run.filename + '/transmissionFullAndFeatureImportance'
        tempfig.savefig(plotFileName.replace('.', 'p') + ui['file_extension'])
        tempax.cla()
        twinx.remove()
        common_variables.tempfig.subplots_adjust(bottom=0.13,
                                                 left=0.15,
                                                 right=0.97,
                                                 top=0.97)
        PLSRsave.plot_feature_importance(tempax, common_variables, ui, xax,
                                         feature_importance)
        plotFileName = run.filename + '/FeatureImportance'
        tempfig.savefig(plotFileName.replace('.', 'p') + ui['file_extension'])
        tempax.cla()
    run.draw()
def plot_node_correlations(event):
    run = PLSR.run
    if not run.ui['reg_type'] == 'NeuralNet':
        return
    print(run.complete_cases[-1].keywords['NN_type'])
    if run.complete_cases[-1].keywords['NN_type'] == 'Convolutional':
        return stability_selection(event)
    return
    if not hasattr(run, 'last_Xval_case'):
        print('Not done running')
        return
    ui = run.ui
    ui['fig_per_row'] = int(run.frame.buttons['fig_per_row'].get())
    ui['max_plots'] = int(run.frame.buttons['max_plots'].get())
    ax = fns.add_axis(run.common_variables.fig, ui['fig_per_row'],
                      ui['max_plots'])
    ax.plot_type = 'NN node map'
    V = run.last_Xval_case.V
    if len(V.X) == 0:
        V = run.last_Xval_case.T

    transformedDataset = run.last_reg_module.scaler.transform(V.X)
    values = run.last_reg_module.neural_net.get_values(transformedDataset)
    run.NNvalues = values
    y_midpoint = run.last_reg_module.neural_net.layer_size / 2
    X = []
    Y = []
    corr = []
    y_rot = np.rot90(np.atleast_2d(V.Y), -1)
    corr_param = run.last_reg_module.neural_net.y_scaler.transform(
        y_rot).reshape(-1)
    for j in range((len(values) + 2) // 3):
        layer = values[j * 3]
        shape = layer.shape
        corr.append([])
        for i in range(shape[1]):
            slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
                layer[:, i], corr_param)
            corr[-1].append(r_value**2)
            X.append(j)
            Y.append(i)
    run.corr = corr
    flat_corr = [item for sublist in corr for item in sublist]
    sc = ax.scatter(X, Y, c=flat_corr, cmap='viridis')
    cbar = run.fig.colorbar(sc, ax=ax)
    cbar.set_label(r'r$^2$')
    run.draw()
示例#7
0
    def do_stability_selection(self,run):
        positively_changed_weights=self.stability_selection_pass(run.last_Xval_case.T)
        for i in range(100-1):
            positively_changed_weights+=self.stability_selection_pass(run.last_Xval_case.T)
            print(str(i+1)+' of 100')
            run.draw()
        ui=run.ui
        ui['fig_per_row']=int(run.frame.buttons['fig_per_row'].get())
        ui['max_plots']=int(run.frame.buttons['max_plots'].get())
        import fns
        ax=fns.add_axis(run.common_variables.fig,ui['fig_per_row'],ui['max_plots'])
        positively_changed_weights=positively_changed_weights.reshape((-1,self.layer_size))

        wavenum=run.last_complete_case.wavenumbers
        dl=(len(wavenum)-len(positively_changed_weights))//2
        wavenum=wavenum[dl:-dl]
        for i,a in enumerate(positively_changed_weights[0]):
            ax.plot(wavenum,positively_changed_weights[:,i])#,label=i)
        ax.invert_xaxis()

        #ax.legend()
        #ax.plot(positively_changed_weights)
        run.draw()
示例#8
0
    def run_wrapper_case(self):
        fig = self.fig
        locations = self.locations
        frame = self.frame
        ui = self.ui
        eprint('running')
        self.fig = fig
        fig.clf()
        self.frame = frame
        # get variables from buttons
        common_variables = types.SimpleNamespace()
        common_variables.draw = self.draw
        self.common_variables = common_variables
        common_variables.keyword_lists = {}

        PLSRregressionMethods.get_relevant_keywords(common_variables, ui)

        ui['multiprocessing'] = 1 - (ui['no_multiprocessing'])

        save_check_var = frame.save_check_var.get()
        ui['save_check_var'] = save_check_var
        filename = frame.name_field_string.get()
        self.filename = filename
        #prepare figures for display (set correct number of axes, each pointing to the next axis)
        ######################### if crossval and moving window -> stop ###########
        if ui['is_validation'] == 'X-val on training' and ui[
                'regression_wavelength_selection'] == 'Moving window':
            print("Use of x-validation with moving window is not supported")
            return
        ######################### if RMSEP and no validation -> stop ##############
        if ui['is_validation'] == 'Training' and ui['RMS_type'] == 'RMSEP':
            print("Unable to calculate RMSEP with only training set")
            return
        #################### if RMSEP and RMSEC and no validation -> only RMSEP ###
        if ui['is_validation'] == 'Training':
            ui['RMS_type'] = 'RMSEC'
            if ui['RMS_type'] == 'Default':
                ui['RMS_type'] = 'RMSEC'
        else:
            if ui['RMS_type'] == 'Default':
                ui['RMS_type'] = 'RMSEP'

        common_variables.frame = frame
        common_variables.fig = fig
        ################################################################################################
        ######################### Load data as training or validation ##################################
        ################################################################################################
        T = types.SimpleNamespace()
        V = types.SimpleNamespace()
        if len(frame.training_files) == 0:
            print('training set required')
            return
        #load training set
        T.X, T.Y, common_variables.trainingfiles, self.wavenumbers, self.regressionCurControlTypes = PLSR_file_import.get_files(
            frame.training_files, ui['max_range'])
        self.original_wavenumbers = self.wavenumbers

        for i, contrltytpe in enumerate(self.regressionCurControlTypes):
            frame.button_handles['cur_col'][i]["text"] = contrltytpe

        if ui['is_validation'] == 'Training' or ui[
                'is_validation'] == 'X-val on training':  # if training or crossval -> deselect validation
            frame.nav.deselect()
            #frame.nav.clear_color('color3')
            #frame.validation_files=frame.nav.get_paths_of_selected_items()
            V.X = np.array([])  # set empty validation set
            V.Y = np.array([])

        elif ui['is_validation'] == 'Training and Validation':
            if len(frame.validation_files) == 0:
                print(
                    'training and validation set, but no validation set in in put'
                )
                return
            #load validation set
            V.X, V.Y, common_variables.validationfiles, _, _2 = PLSR_file_import.get_files(
                frame.validation_files, ui['max_range'])

        common_variables.original_T = copy.deepcopy(T)
        common_variables.original_V = copy.deepcopy(V)

        ################################################################################################
        ################################## load reference spectra #######################################
        ################################################################################################
        if ui['reference_spectra'] == '':
            self.reference_spectra = None
        else:
            try:
                temp, _1, _2, _3, _4 = PLSR_file_import.get_files(
                    [ui['reference_spectra']], np.inf)
                if len(temp) > 0:
                    print(
                        'first reference spectra in list selected for reference spectra selected as reference spectra'
                    )
                self.reference_spectra = np.array(temp[0])
            except Exception as e:
                self.reference_spectra = None
                print(e)
                print('error importing referece spectra -> ignoring')
        if ui['background_spectra'] == '':
            self.background_spectra = None
        else:
            try:
                temp, _1, _2, _3, _4 = PLSR_file_import.get_files(
                    [ui['background_spectra']], np.inf)
                if len(temp) > 0:
                    print(
                        'first background spectra in list selected for reference spectra selected as reference spectra'
                    )
                self.background_spectra = np.array(temp[0])
            except Exception as e:
                self.background_spectra = None
                print(e)
                print('error importing referece spectra -> ignoring')

        ################################################################################################
        ################# set up folder, save log and temporary figure for saving ######################
        ################################################################################################

        if save_check_var:
            if not os.path.exists(filename):
                os.makedirs(filename)
            PLSRsave.SaveLogFile(filename, ui, common_variables)
            common_variables.tempfig, common_variables.tempax = PLSRsave.make_tempfig(
                ui, frame)
        ################################################################################################
        ############################## calculate window ranges #########################################
        ################################################################################################
        common_variables.datapoints = np.arange(len(self.wavenumbers))
        #common_variables.datapointlists=[common_variables.datapoints]# declare this for get_or_make_absorbance_ax
        #common_variables.datapoints, common_variables.datapointlists=PLSRpreprocessing.GetDatapoints(self.wavenumbers, ui)
        ################################################################################################
        ################################### save unprocessed spectra ###################################
        ################################################################################################
        if ui['plot_spectra_before_preprocessing']:
            eprint('plot abs')
            if ui['save_check_var']:
                PLSRsave.PlotAbsorbance(common_variables.tempax,
                                        common_variables.tempfig,
                                        common_variables.datapoints, ui,
                                        self.wavenumbers, T.X, V.X)
                plotFileName = filename + '/SpectraPrePreprocessing'
                common_variables.tempfig.savefig(
                    plotFileName.replace('.', 'p') + ui['file_extension'])
                common_variables.tempax.cla()
            ax = PLSRsave.get_or_make_absorbance_ax(self)
            self.draw()

        ################################################################################################
        ################################### make pychem input file #####################################
        ################################################################################################
        if int(ui['make_pyChem_input_file']):
            if ui['is_validation'] == 'Training and Validation':
                PLSRsave.writePyChemFile(T.X, T.Y, validation,
                                         validationtruevalues)
            else:
                PLSRsave.writePyChemFile(T.X, T.Y, [], [])
        ################################################################################################
        ################## set current control and remove data higher than maxrange ####################
        ################################################################################################
        datasets = [T]
        if ui['is_validation'] == 'Training and Validation':
            datasets.append(V)
        for E in datasets:
            keepsamples = []
            for i, _ in enumerate(E.Y):
                if not E.Y[i, ui['cur_col']] > ui['max_range']:
                    keepsamples.append(i)
            E.X = E.X[keepsamples, :]
            E.Y = E.Y[keepsamples, ui['cur_col']]
        ui['cur_control_string'] = self.regressionCurControlTypes[
            ui['cur_col']]

        PLSRpreprocessing.do_preprocessing(self, T, V)
        if ui['plot_fourier']:
            if hasattr(T, 'X_fft'):
                ax = fns.add_axis(fig, ui['fig_per_row'], ui['max_plots'])
                PLSRsave.plot_fourier(ax, fig, T, V, ui)

        self.complete_cases = []
        for _ in [1]:  # is a loop so that you can use 'break'
            for i, dercase in enumerate(self.preprocessed_cases):
                #need to set data range in case of derrivative, rerunn in all cases anyways
                datapoints = PLSRpreprocessing.GetDatapoints(
                    dercase.wavenumbers, ui)
                #common_variables.datapoints=datapoints
                #common_variables.datapointlists=datapointlists
                if ui['plot_spectra_after_preprocessing']:
                    ax = fns.add_axis(fig, ui['fig_per_row'], ui['max_plots'])
                    PLSRsave.PlotAbsorbance(ax,
                                            fig,
                                            datapoints,
                                            ui,
                                            dercase.wavenumbers,
                                            dercase.T.X,
                                            dercase.V.X,
                                            dercase=dercase)
                    self.draw()
                    if ui['save_check_var']:
                        PLSRsave.PlotAbsorbance(common_variables.tempax,
                                                common_variables.tempfig,
                                                datapoints,
                                                ui,
                                                dercase.wavenumbers,
                                                dercase.T.X,
                                                dercase.V.X,
                                                dercase=dercase)
                        plotFileName = dercase.folder + '/SpectraPostPreprocessing'
                        common_variables.tempfig.savefig(
                            plotFileName.replace('.', 'p') +
                            ui['file_extension'])
                        common_variables.tempax.cla()
                for E in [dercase.T, dercase.V]:
                    if len(E.Y) > 0:
                        E.X = E.X[:, datapoints]
                dercase.wavenumbers = dercase.wavenumbers[datapoints]

                #create complete cases for all pemutations of keyword values in keyword_lists
                for keyword_case in PLSRregressionMethods.generate_keyword_cases(
                        common_variables.keyword_lists):
                    self.complete_cases.append(types.SimpleNamespace())
                    self.complete_cases[-1].wavenumbers = dercase.wavenumbers
                    self.complete_cases[-1].folder = dercase.folder
                    self.complete_cases[-1].sg_config = dercase.sg_config
                    self.complete_cases[-1].derrivative = dercase.derrivative
                    self.complete_cases[-1].T = dercase.T
                    self.complete_cases[-1].V = dercase.V
                    self.complete_cases[
                        -1].preprocessing_done = dercase.preprocessing_done
                    self.complete_cases[-1].keywords = keyword_case
            if ui['reg_type'] == 'None':
                break
            for case in self.complete_cases:
                case.XvalRMSEs = []
                case.XvalCorrClass = []
                common_variables.keywords = case.keywords
                #GeneticAlgorithm(ui,T,V,datapoints,components)
                if ui['regression_wavelength_selection'] == 'No wavelength selection':
                    active_wavenumers = np.ones(len(case.wavenumbers),
                                                dtype=bool)
                else:
                    # report to user regarding split module
                    if self.ui['WS_loss_type'] == 'X-validation on training':
                        if self.ui['WS_cross_val_N'] == 1 and self.ui[
                                'WS_cross_val_max_cases'] == -1:
                            print('Using sklearn.LeaveOneOut on ' +
                                  str(len(case.T.Y)) +
                                  ' measurements. Maxcases set to ' +
                                  str(len(case.T.Y)))
                        else:
                            if self.ui['WS_cross_val_max_cases'] == -1:
                                print(
                                    'WS_cross_val_max_cases set to -1, GA_cross_val_N not set to 1. Setting GAcross_val_max_cases to default (20)'
                                )
                                self.ui['WS_cross_val_max_cases'] = 20
                    if ui['regression_wavelength_selection'] == 'Genetic Algorithm':
                        GAobject = PLSRGeneticAlgorithm.GeneticAlgorithm(
                            common_variables, ui, case)
                        active_wavenumers = GAobject.run(
                            fns.add_axis(common_variables.fig,
                                         ui['fig_per_row'], ui['max_plots']),
                            case.wavenumbers, case.folder, self.draw)
                    elif ui['regression_wavelength_selection'] == 'Moving Window':
                        active_wavenumers = PLSRwavelengthSelection.MW(
                            case, ui, common_variables)
                    elif ui['regression_wavelength_selection'] == 'Sequential Feature Selector':
                        FSobject = PLSRsequential_feature_selectors.sequentialFeatureSelector(
                            common_variables, ui, case, self.draw)
                        active_wavenumers = FSobject.run()

                Xval_cases = crossval(
                    case.T, case.V, ui, case
                )  # returns [T],[V] if not crossva, otherwise makes cases from validation dataset
                for Xval_case in Xval_cases:
                    #	ui.datapoints=runGeneticAlgorithm(dercase[0],dercase[1],dercase[2],dercase[3],dercase[4],dercase[5],dercase[6],dercase[7])
                    #def MW(T,V,wavenumbers, folder,ui,sg_config,curDerivative,supressplot):
                    if ui['save_check_var'] and not ui['do_not_save_plots']:
                        active_wavenumbers_file = case.folder + ui[
                            'reg_type'] + PLSRsave.get_unique_keywords_formatted(
                                common_variables.keyword_lists,
                                case.keywords).replace(
                                    '.', 'p') + 'active_wavenumers.dpb'
                        PLSRsave.save_active_wavenumbers(
                            active_wavenumbers_file, case.wavenumbers,
                            active_wavenumers)
                    case.active_wavenumers = active_wavenumers
                    self.draw()
                    self.last_reg_module, RMSe = run_reg_module(
                        Xval_case,
                        case,
                        ui,
                        common_variables,
                        active_wavenumers,
                        self.filename + '/results_table',
                        keywords={})
                    self.draw()
                    self.last_complete_case = case
                    self.last_Xval_case = Xval_case
                    if Xval_case.supressplot == 0:
                        if ui['is_validation'] == 'X-val on training':
                            #if ui['RMS_type']=='Combined RMSEP+RMSEC':
                            #	print('RMSEC+RMSEP = '+PLSRsave.custom_round(case.xvalRMSE,3)+' '+ui['unit'])
                            if not 'classifier_type' in case.keywords:
                                case.xvalRMSE = np.sqrt(
                                    np.sum(np.array(case.XvalRMSEs)**2) /
                                    len(case.XvalRMSEs))
                                if ui['RMS_type'] == 'RMSEC':
                                    print('RMSEC = ' + PLSRsave.custom_round(
                                        case.xvalRMSE, 3) + ' ' + ui['unit'])
                                elif ui['RMS_type'] == 'RMSEP':
                                    print('RMSEP = ' + PLSRsave.custom_round(
                                        case.xvalRMSE, 3) + ' ' + ui['unit'])
                            else:
                                print(case.XvalCorrClass)
                                case.xvalCorrClas = np.average(
                                    case.XvalCorrClass)
                                print(case.xvalCorrClas)
                                if ui['RMS_type'] == 'RMSEC':
                                    print('x-val corr classifed training = ' +
                                          str(round(case.xvalCorrClas *
                                                    100, 3)) + ' %')
                                elif ui['RMS_type'] == 'RMSEP':
                                    print(
                                        'x-val corr classifed prediction = ' +
                                        str(round(case.xvalCorrClas *
                                                  100, 3)) + ' %')

                        case.XvalRMSEs = []
                eprint('done')
示例#9
0
 elif ui['coeff_det_type'] == 'R':
     coeff_det = Xval_case.R_not_squared
 if reg_module.type == 'classifier':  #'classifier_type' in keywords:
     frac_cor_lab = PLSRclassifiers.get_correct_categorized(
         case.X_val_Y[-1], case.X_val_pred[-1])
     case.XvalCorrClass.append(frac_cor_lab)
 else:
     frac_cor_lab = -1
 #plot
 if not supressplot:
     if not ui['do_not_save_plots']:
         PLSRsave.plot_regression(Xval_case,
                                  case,
                                  ui,
                                  fns.add_axis(common_variables.fig,
                                               ui['fig_per_row'],
                                               ui['max_plots']),
                                  keywords,
                                  RMSe,
                                  coeff_det,
                                  frac_cor_lab=frac_cor_lab)
     if ui['save_check_var']:
         if not ui['do_not_save_plots']:
             PLSRsave.plot_regression(Xval_case,
                                      case,
                                      ui,
                                      common_variables.tempax,
                                      keywords,
                                      RMSe,
                                      coeff_det,
                                      frac_cor_lab=frac_cor_lab)
def plot_components_PCR(event):
    run = PLSR.run
    if not run.ui['reg_type'] == 'PCR':
        return
    """Function for making plots of the principal components from PCR."""
    ui = run.ui
    ui['fig_per_row'] = int(run.frame.buttons['fig_per_row'].get())
    ui['max_plots'] = int(run.frame.buttons['max_plots'].get())
    common_variables = run.common_variables
    reg_module = run.last_reg_module
    components = reg_module.pca.components_[:reg_module.components]
    #print(components)
    ui = run.ui
    wavenum = run.last_complete_case.wavenumbers
    if ui['save_check_var']:
        tempax = common_variables.tempax
        tempfig = common_variables.tempfig
    for i, component in enumerate(components):
        ax = fns.add_axis(common_variables.fig, ui['fig_per_row'],
                          ui['max_plots'])
        yax_label = 'Component ' + str(i + 1)
        PLSRsave.plot_component(ax, ui, wavenum, yax_label, component)
        run.draw()
        if ui['save_check_var']:
            tempax.cla()
            PLSRsave.plot_component(tempax, ui, wavenum, yax_label, component)
            plotFileName = run.filename + '/PCR component ' + str(i + 1)
            tempfig.savefig(
                plotFileName.replace('.', 'p') + ui['file_extension'])
    linreg_coef = reg_module.linreg.coef_
    linreg_coef = linreg_coef / sum(linreg_coef)
    ax = fns.add_axis(common_variables.fig, ui['fig_per_row'], ui['max_plots'])
    PLSRsave.plot_component_weights(ax, ui, linreg_coef)
    if ui['save_check_var']:
        tempax.cla()
        PLSRsave.plot_component_weights(tempax, ui, linreg_coef)
        plotFileName = run.filename + '/PCR Weights'
        tempfig.savefig(plotFileName.replace('.', 'p') + ui['file_extension'])
    run.draw()

    ax = fns.add_axis(common_variables.fig, ui['fig_per_row'], ui['max_plots'])
    product = np.dot(np.transpose(components), linreg_coef)
    yax_label = r'Comps$\cdot$weights'
    PLSRsave.plot_component(ax, ui, wavenum, yax_label, product)
    if ui['save_check_var']:
        tempax.cla()
        PLSRsave.plot_component(tempax, ui, wavenum, yax_label, product)
        plotFileName = run.filename + '/PCR components times weights'
        tempfig.savefig(plotFileName.replace('.', 'p') + ui['file_extension'])
    run.draw()

    ax = PLSRsave.get_or_make_absorbance_ax(run)
    PLSRsave.plot_component_weights_twinx(ax, ui, wavenum, yax_label, product)
    if ui['save_check_var']:
        tempax = common_variables.tempax
        tempfig = common_variables.tempfig
        common_variables.tempfig.subplots_adjust(bottom=0.13,
                                                 left=0.15,
                                                 right=0.85,
                                                 top=0.97)
        PLSRsave.PlotAbsorbance(tempax, tempfig,
                                run.last_complete_case.active_wavenumers, ui,
                                run.last_complete_case.wavenumbers,
                                common_variables.original_T.X,
                                common_variables.original_V.X)
        twinx = PLSRsave.plot_component_weights_twinx(tempax, ui, wavenum,
                                                      yax_label, product)
        plotFileName = run.filename + '/transmission and PCR components times weights '
        tempfig.savefig(plotFileName.replace('.', 'p') + ui['file_extension'])
        tempax.cla()
        twinx.remove()
        common_variables.tempfig.subplots_adjust(bottom=0.13,
                                                 left=0.15,
                                                 right=0.97,
                                                 top=0.97)
    run.draw()
    return
def plot_node_activation_vector(event):
    run = PLSR.run
    if not run.ui['reg_type'] == 'NeuralNet':
        return
    ui = run.ui
    layer = int(event.xdata + 0.5)
    node = int(event.ydata + 0.5)
    try:
        r2 = run.corr[layer][node]
        print('node at x', layer, 'y', node, 'r**2', r2)
    except:
        print('no node at x', layer, 'y', node)
        return

    ui['fig_per_row'] = int(run.frame.buttons['fig_per_row'].get())
    ui['max_plots'] = int(run.frame.buttons['max_plots'].get())
    ax = fns.add_axis(run.common_variables.fig, ui['fig_per_row'],
                      ui['max_plots'])
    weights = run.last_reg_module.neural_net.get_weights()

    V = run.last_Xval_case.V
    if len(V.X) == 0:
        V = run.last_Xval_case.T
    data = run.last_reg_module.scaler.transform(V.X)
    input_dim = data.shape[1]
    num_inputs = data.shape[0]

    print(data.shape)
    sensitivity = [[]]
    for i in range(input_dim):
        sensitivity[-1].append(np.zeros(data.shape))
        sensitivity[-1][-1][:, i] = 1
    activation = run.last_reg_module.neural_net.activation
    for ll in range((len(weights) + 2) // 3):
        sensitivity.append([])
        for i in range(input_dim):
            sensitivity[-1].append(sensitivity[-2][i] @ weights[ll * 3][0][:])
            #sensitivity[-1][-1] += weights[ll*3][1] #do not include this, we are calculating derivatives, not response
        data = data @ weights[ll * 3][0][:]
        data += weights[ll * 3][1]  #add bias
        if not ll == (len(weights) - 1) // 3:
            for i in range(input_dim):
                sensitivity[-1][i] = activation(sensitivity[-1][i], pivot=data)
                #print(np.sum(sensitivity[-1][-1]==0))
            data = activation(data)
            #for i in range(data.shape[1]):
            #	print(np.sum(data[:,i]==0))
    #sensitivity[layer][input][wavenumber,node
    #sensitivity[layer+1]=np.array(sensitivity[layer+1])
    #ode_sensitivity=sensitivity[layer+1][:,:,node]
    run.sensitivity = sensitivity
    node_sensitivity = []
    for i in range(input_dim):
        node_sensitivity.append(sensitivity[layer + 1][i][:, node])
    node_sensitivity = np.array(node_sensitivity)
    #print(len(sensitivity),sensitivity[layer+1].shape,node_sensitivity.shape)
    sense_vector = (np.average(node_sensitivity, axis=1))
    sense_std = (np.std(node_sensitivity, axis=1))
    #for s in sensitivity[-1]:
    #print(run.sense_vector[layer+1][node])
    wavenum = run.last_complete_case.wavenumbers
    wavenum = wavenum[run.last_complete_case.active_wavenumers]
    ax.errorbar(wavenum,
                sense_vector,
                yerr=sense_std,
                color=[1, 0, 0, 1],
                ecolor=[0, 0, 1, 1])
    ax.invert_xaxis()
    #ax.plot(wavenum,sense_vector)
    #ax=fns.add_axis(run.common_variables.fig,ui['fig_per_row'],ui['max_plots'])
    #ax.plot(wavenum,sense_std)
    '''ax=fns.add_axis(run.common_variables.fig,ui['fig_per_row'],ui['max_plots'])
	ax.plot(wavenum,node_sensitivity,'+')
	ax.invert_xaxis()
	ax=fns.add_axis(run.common_variables.fig,ui['fig_per_row'],ui['max_plots'])
	ax.plot(wavenum,run.last_reg_module.scaler.transform(V.X).swapaxes(0,1),'+')
	ax.invert_xaxis()'''
    '''ax=fns.add_axis(run.common_variables.fig,ui['fig_per_row'],ui['max_plots'])
	data=run.last_reg_module.neural_net.y_scaler.inverse_transform(data)
	ax.plot(V.Y,data,'o')'''
    #ax.plot(sense_std)

    run.draw()
    #ax.plot()

    #values=run.last_reg_module.neural_net.get_values(transformedDataset)
    '''inv_act=run.last_reg_module.neural_net.inv_activation
				T, V, trail_active_wavenumbers,
				use_stored=True)

	# done moving window
	Wresults=Wresults+(Wresults==0)*np.max(Wresults) # set empty datapoints to max value
	j,i=np.unravel_index(Wresults.argmin(), Wresults.shape)
	bestVal=Wresults[j,i]
	bestSize=Wsizes[i]
	bestStart=j-bestSize//2

	# plot MWresults
	Wresults=np.array(Wresults)
	# make plot
	Wwindowsize,Wwavenumbers = np.meshgrid(Wsizes*abs(dw), wavenumbers)
	unique_keywords=PLSRsave.get_unique_keywords_formatted(common_variables.keyword_lists,keywords)
	PLSRsave.PcolorMW(Wwavenumbers,Wwindowsize,Wresults,fns.add_axis(common_variables.fig,ui['fig_per_row'],ui['max_plots']),unique_keywords[1:],ui)
	if ui['save_check_var']:
		tempCbar=PLSRsave.PcolorMW(Wwavenumbers,Wwindowsize,Wresults,common_variables.tempax,unique_keywords[1:],ui)
		common_variables.tempfig.subplots_adjust(bottom=0.13,left=0.15, right=0.97, top=0.9)
		plotFileName=folder+ui['reg_type']+unique_keywords.replace('.','p')+'_moving_window'
		common_variables.tempfig.savefig(plotFileName+ui['file_extension'])
		tempCbar.remove()
	# set result as keywords, so that they are saved
	bestEnd=bestStart+bestSize
	Wwidth=wavenumbers[bestStart]-wavenumbers[bestEnd-1] #cm-1
	Wcenter=0.5*(wavenumbers[bestStart]+wavenumbers[bestEnd-1]) #cm-1
	keywords['MW width']=str(round(Wwidth,1))+r' cm$^{-1}$'
	keywords['MW center']=str(round(Wcenter,1))+r' cm$^{-1}$'
	# prepare return vector
	active_wavenumers=np.zeros(len(wavenumbers), dtype=bool)
	active_wavenumers[bestStart:bestEnd]=True
    def run(self):
        '''if self.ui['SFS type']=='Forward':
			return self.forward_selection()
		if self.ui['SFS type']=='Backwards':
			return self.backwards_selection()
			def forward_selection(self):'''
        wavenumbers = self.case.wavenumbers
        if 'Forward' in self.ui['SFS type']:
            direction = 'Forward '
            current_active_wavenumbers = np.zeros(len(wavenumbers), dtype=bool)
        elif 'Backward' in self.ui['SFS type']:
            direction = 'Backward'
            current_active_wavenumbers = np.ones(len(wavenumbers), dtype=bool)
        if self.ui['SFS_floating']:
            floating = True
        else:
            floating = False
        ax = fns.add_axis(self.common_variables.fig, self.ui['fig_per_row'],
                          self.ui['max_plots'])
        # calculate the needed X-val splits and store them
        PLSRwavelengthSelection.WS_getCrossvalSplits([0, 1],
                                                     self.T,
                                                     self.V,
                                                     self.ui,
                                                     use_stored=False)
        PLSRsave.PlotChromosomes(ax,
                                 wavenumbers, [],
                                 self.ui,
                                 ylabel='Iteration')
        if self.ui['SFS type'] == 'Forward':
            current_active_wavenumbers = np.zeros(len(wavenumbers), dtype=bool)
        elif self.ui['SFS type'] == 'Backwards':
            current_active_wavenumbers = np.ones(len(wavenumbers), dtype=bool)
        best_historic_active = []
        best_loss = []
        generation = 0
        while True:
            #main step
            if direction == 'Forward ':
                trail_active_wavenumbers = self.get_trails_forward(
                    current_active_wavenumbers)
            else:  # direction=='Backward'
                trail_active_wavenumbers = self.get_trails_backward(
                    current_active_wavenumbers)
            if len(trail_active_wavenumbers) == 0:
                break
            trail_active_wavenumbers = cut_previous(trail_active_wavenumbers,
                                                    best_historic_active)
            current_active_wavenumbers, l, out_str = self.do_pass(
                trail_active_wavenumbers, generation)
            print(direction + ' ' + out_str)
            best_loss.append(l)
            PLSRsave.PlotChromosome(ax, wavenumbers,
                                    current_active_wavenumbers, generation)
            self.draw_fun()
            best_historic_active.append(copy.copy(current_active_wavenumbers))
            best_historic_generation = np.argmin(best_loss)
            generation += 1
            if generation == self.ui['SFS_max_iterations']:
                break
            if floating:
                while True:
                    if direction == 'Forward ':
                        if np.sum(current_active_wavenumbers) == 1:
                            break
                        else:
                            trail_active_wavenumbers = self.get_trails_backward(
                                current_active_wavenumbers
                            )  #reverse of main loop
                    else:  # direction=='Backward'
                        if np.sum(current_active_wavenumbers) == len(
                                current_active_wavenumbers):
                            break
                        trail_active_wavenumbers = self.get_trails_forward(
                            current_active_wavenumbers)  #reverse of main loop
                    trail_active_wavenumbers = cut_previous(
                        trail_active_wavenumbers, best_historic_active)
                    if len(trail_active_wavenumbers) == 0:
                        break
                    best_trail, l, out_str = self.do_pass(
                        trail_active_wavenumbers, generation)
                    if l < best_loss[-1]:
                        print('Floating' + ' ' + out_str)
                        current_active_wavenumbers = best_trail
                        best_loss.append(l)
                        PLSRsave.PlotChromosome(ax, wavenumbers,
                                                current_active_wavenumbers,
                                                generation)
                        self.draw_fun()
                        best_historic_active.append(
                            copy.copy(current_active_wavenumbers))
                        best_historic_generation = np.argmin(best_loss)
                        generation += 1
                    else:
                        break
            if generation == self.ui[
                    'SFS_max_iterations'] or best_historic_generation < len(
                        best_loss) - self.ui['SFS_num_after_min'] or np.sum(
                            current_active_wavenumbers
                        ) == self.ui['SFS_target']:
                break

        print('best iteration ' + str(best_historic_generation + 1) +
              ', best ' + self.rmse_string + '  = ' +
              PLSRsave.custom_round(best_loss[best_historic_generation], 2))
        PLSRsave.PlotChromosome(ax,
                                wavenumbers,
                                best_historic_active[best_historic_generation],
                                best_historic_generation,
                                color=[1, 0, 0, 1])

        if self.ui['save_check_var'] == 1:
            PLSRsave.PlotChromosomes(self.common_variables.tempax,
                                     wavenumbers,
                                     best_historic_active,
                                     self.ui,
                                     ylabel='Iteration')
            PLSRsave.PlotChromosome(
                self.common_variables.tempax,
                wavenumbers,
                best_historic_active[best_historic_generation],
                best_historic_generation,
                color=[1, 0, 0, 1])
            self.common_variables.tempfig.subplots_adjust(bottom=0.13,
                                                          left=0.15,
                                                          right=0.97,
                                                          top=0.9)
            unique_keywords = PLSRsave.get_unique_keywords_formatted(
                self.common_variables.keyword_lists, self.case.keywords)
            plotFileName = case.folder + self.ui[
                'reg_type'] + unique_keywords.replace('.', 'p') + 'SFS'
            self.common_variables.tempfig.savefig(
                plotFileName.replace('.', 'p') + self.ui['file_extension'])
        return best_historic_active[best_historic_generation]