def run_foa(sample, gt):

    # Import image
    test_image = foai.ImageObject(sample, rgb=False)
    test_image.ground_truth = gt

    # Generate Gaussian Blur Prior - Time ~0.0020006
    foveation_prior = foac.matlab_style_gauss2D(test_image.modified.shape, 300)

    # Generate Gamma Kernel
    k = np.array([1, 9], dtype=float)
    mu = np.array([0.2, 0.5], dtype=float)
    kernel = foac.gamma_kernel(mask_size=(14, 14), k=k, mu=mu)
    # plt.imshow(kernel)

    # Generate Saliency Map
    foac.convolution(test_image, kernel, foveation_prior)

    # Bound and Rank the most Salient Regions of Saliency Map
    foas.salience_scan(test_image, rank_count=3, bbox_size=(28, 28))

    test_image.draw_image_patches()
    test_image.plot_main()
    test_image.plot_patches()
    plt.show()

    return test_image
示例#2
0
def run_foa(sample, prior, kernel, bbox=(28, 28)):

    # Import image
    img = foai.ImageObject(sample, rgb=False)

    # Generate Saliency Map
    foac.convolution(img, kernel, prior)

    # Bound and Rank the most Salient Regions of Saliency Map
    foas.salience_scan(img, rank_count=1, bbox_size=bbox)
    img.draw_image_patches()
    # img.plot_main()
    
    # Pad patches to be the same size (28x28)
    patch = img.patch_list[0]
    if (patch.shape != bbox):
        pad = np.zeros(bbox)
        pad[:patch.shape[0], :patch.shape[1]] = patch
        patch = pad

    return patch.reshape(1, bbox[0], bbox[1])
def run_foa_svhn(input=SVHNImage, tf=int, gt=None, k=None, mu=None):
    assert (input.image is not None)
    img = np.array(input.image)
    x_dim = img.shape[0]
    y_dim = img.shape[1]
    print(np.array(img.shape))

    # Load Image Object
    img = foai.ImageObject(img)
    img.ground_truth = gt

    # Generate Gaussian Blur Prior - Time ~0.0020006
    foveation_prior = foac.matlab_style_gauss2D(img.modified.shape, 300)

    # Generate Gamma Kernel
    # k = np.array([1, 26, 1, 25, 1, 19], dtype=float)
    # mu = np.array([2, 2, 1, 1, 0.5, 0.5], dtype=float)
    k = np.array([1, 5, 1, 9, 1, 13], dtype=float)
    mu = np.array([0.8, 0.7, 0.3, 0.5, 0.1, 0.3], dtype=float)
    kernel = foac.gamma_kernel(img, mask_size=(32, 32), k=k, mu=mu)

    # Generate Saliency Map
    start = time.time()
    foac.convolution(img, kernel, foveation_prior)
    stop = time.time()
    print(f"Salience Map Generation: {stop - start} seconds")

    # Bound and Rank the most Salient Regions of Saliency Map
    foas.salience_scan(img, rank_count=4, bbox_size=(y_dim // 4, y_dim // 4))
    bbt = 2
    if (x_dim < 100 and y_dim < 100):
        bbt = 1

    img.draw_image_patches(bbt=bbt)

    # Threshold
    img.salience_map = np.where(img.salience_map > tf, img.salience_map, 0)

    img.plot_main()
    img.plot_patched_map()
示例#4
0
    x, y = np.where(gt > 0)
    for i in zip(x, y):
        temp.append(
            np.log2(eps + smap[i[0], i[1]]) -
            np.log2(eps + baseline[i[0], i[1]]))

    return np.mean(temp)


# Main Routine
if __name__ == '__main__':
    plt.close('all')

    # Open test images as 8-bit RGB values - Time ~0.0778813
    file = "./SMW_Test_Image.png"
    mario = foai.ImageObject(file)
    file = "../datasets/AIM/eyetrackingdata/original_images/22.jpg"
    banana = foai.ImageObject(file)
    file = "../datasets/AIM/eyetrackingdata/ground_truth/d22.jpg"
    gt_banana = Image.open(file)
    gt_banana.load()
    file = "../datasets/AIM/eyetrackingdata/original_images/120.jpg"
    corner = foai.ImageObject(file)
    file = "../datasets/AIM/eyetrackingdata/ground_truth/d120.jpg"
    gt_corner = Image.open(file)
    gt_corner.load()

    # Test Image
    test_image = corner
    test_image.ground_truth = np.array(gt_corner, dtype=np.float64)
    os.makedirs(dir_path, exist_ok=True)

    # Read first frame
    success, image = movie.read()
    print("FIRST READ SUCCESS: ", success)

    # Get image dimensions: Mario - 224x256x3
    height, width, channels = image.shape
    print("H: ", height, "W: ", width, "C: ", channels)
    start = time.time()

    # Generate Gaussian Blur Prior - Time ~0.0020006
    prior = foac.matlab_style_gauss2D(image.shape, 300)

    # Generate Gamma Kernel
    image_curr = foai.ImageObject(image, fc=frame)
    image_prev = image_curr
    image_prev.salience_map = np.zeros(image_prev.original.shape[:-1])
    kernel = foac.gamma_kernel(image_curr)

    # Step through each movie frame
    while success:
        frame += 1
        image_name = str(frame) + ext
        image_curr = foai.ImageObject(image, fc=frame)

        # Generate Saliency Map with Gamma Filter
        foac.convolution(image_curr, kernel, prior)

        if (frame % 100 == 0):
            stop = time.time()
示例#6
0
plt.rcParams.update({'font.size': 22})
#image_set = np.array([False])

# Main Routine
if __name__ == '__main__':
    plt.close('all')

    # Load image set data
    if (image_set.any() == False):
        print("Importing data...")
        image_set = np.load("./STATE0.npy")

    # Test Image
    test_image = image_set[0]
    cv2.imwrite("0.png", test_image)
    test_image = foai.ImageObject(cv2.imread("0.png"))
    os.remove("0.png")

    # %% Generate Gaussian and Gamma Kernel

    # Generate Gaussian Blur Prior - Time ~0.0020006
    foveation_prior = foac.matlab_style_gauss2D(test_image.modified.shape, 300)

    # Generate Gamma Kernel
    kernel = foac.gamma_kernel(test_image)

    # %% Process Images
    image_height = image_set.shape[1]
    image_width = image_set.shape[2]
    rankCount = 10  # Number of maps scans to run
    processed_data = np.empty(