示例#1
0
文件: spectra.py 项目: parhalje/fooof
def plot_spectra(freqs,
                 power_spectra,
                 log_freqs=False,
                 log_powers=False,
                 colors=None,
                 labels=None,
                 ax=None,
                 **plot_kwargs):
    """Plot one or multiple power spectra.

    Parameters
    ----------
    freqs : 1d or 2d array or list of 1d array
        Frequency values, to be plotted on the x-axis.
    power_spectra : 1d or 2d array or list of 1d array
        Power values, to be plotted on the y-axis.
    log_freqs : bool, optional, default: False
        Whether to plot the frequency axis in log spacing.
    log_powers : bool, optional, default: False
        Whether to plot the power axis in log spacing.
    colors : list of str, optional, default: None
        Line colors of the spectra.
    labels : list of str, optional, default: None
        Legend labels for the spectra.
    ax : matplotlib.Axes, optional
        Figure axes upon which to plot.
    **plot_kwargs
        Keyword arguments to pass into the ``style_plot``.
    """

    ax = check_ax(ax, plot_kwargs.pop('figsize', PLT_FIGSIZES['spectral']))

    # Create the plot
    plot_kwargs = check_plot_kwargs(plot_kwargs, {'linewidth': 2.0})

    # Make inputs iterable if need to be passed multiple times to plot each spectrum
    plt_powers = np.reshape(power_spectra, (1, -1)) if np.ndim(power_spectra) == 1 else \
        power_spectra
    plt_freqs = repeat(freqs) if isinstance(
        freqs, np.ndarray) and freqs.ndim == 1 else freqs

    # Set labels
    labels = plot_kwargs.pop('label') if 'label' in plot_kwargs.keys(
    ) and labels is None else labels
    labels = repeat(labels) if not isinstance(labels, list) else cycle(labels)
    colors = repeat(colors) if not isinstance(colors, list) else cycle(colors)

    # Plot
    for freqs, powers, color, label in zip(plt_freqs, plt_powers, colors,
                                           labels):

        # Set plot data, logging if requested, and collect color, if absent
        freqs = np.log10(freqs) if log_freqs else freqs
        powers = np.log10(powers) if log_powers else powers
        if color:
            plot_kwargs['color'] = color

        ax.plot(freqs, powers, label=label, **plot_kwargs)

    style_spectrum_plot(ax, log_freqs, log_powers)
示例#2
0
文件: spectra.py 项目: parhalje/fooof
def plot_spectra_shading(freqs,
                         power_spectra,
                         shades,
                         shade_colors='r',
                         add_center=False,
                         ax=None,
                         **plot_kwargs):
    """Plot one or multiple power spectra with a shaded frequency region (or regions).

    Parameters
    ----------
    freqs : 1d or 2d array or list of 1d array
        Frequency values, to be plotted on the x-axis.
    power_spectra : 1d or 2d array or list of 1d array
        Power values, to be plotted on the y-axis.
    shades : list of [float, float] or list of list of [float, float]
        Shaded region(s) to add to plot, defined as [lower_bound, upper_bound].
    shade_colors : str or list of string
        Color(s) to plot shades.
    add_center : bool, optional, default: False
        Whether to add a line at the center point of the shaded regions.
    ax : matplotlib.Axes, optional
        Figure axes upon which to plot.
    **plot_kwargs
        Keyword arguments to pass into :func:`~.plot_spectra`.

    Notes
    -----
    Parameters for `plot_spectra` can also be passed into this function as keyword arguments.

    This includes `log_freqs`, `log_powers` & `labels`. See `plot_spectra` for usage details.
    """

    ax = check_ax(ax, plot_kwargs.pop('figsize', PLT_FIGSIZES['spectral']))

    plot_spectra(freqs, power_spectra, ax=ax, **plot_kwargs)

    add_shades(ax, shades, shade_colors, add_center,
               plot_kwargs.get('log_freqs', False))

    style_spectrum_plot(ax, plot_kwargs.get('log_freqs', False),
                        plot_kwargs.get('log_powers', False))
示例#3
0
文件: error.py 项目: parhalje/fooof
def plot_spectral_error(freqs,
                        error,
                        shade=None,
                        log_freqs=False,
                        ax=None,
                        **plot_kwargs):
    """Plot frequency by frequency error values.

    Parameters
    ----------
    freqs : 1d array
        Frequency values, to be plotted on the x-axis.
    error : 1d array
        Calculated error values or mean error values across frequencies, to plot on the y-axis.
    shade : 1d array, optional
        Values to shade in around the plotted error.
        This could be, for example, the standard deviation of the errors.
    log_freqs : bool, optional, default: False
        Whether to plot the frequency axis in log spacing.
    ax : matplotlib.Axes, optional
        Figure axes upon which to plot.
    **plot_kwargs
        Keyword arguments to pass into the ``style_plot``.
    """

    ax = check_ax(ax, plot_kwargs.pop('figsize', PLT_FIGSIZES['spectral']))

    plt_freqs = np.log10(freqs) if log_freqs else freqs

    plot_spectra(plt_freqs, error, ax=ax, linewidth=3)

    if np.any(shade):
        ax.fill_between(plt_freqs, error - shade, error + shade, alpha=0.25)

    ymin, ymax = ax.get_ylim()
    if ymin < 0:
        ax.set_ylim([0, ymax])
    ax.set_xlim(plt_freqs.min(), plt_freqs.max())

    style_spectrum_plot(ax, log_freqs, True)
    ax.set_ylabel('Absolute Error')
示例#4
0
文件: fm.py 项目: parhalje/fooof
def plot_fm(fm,
            plot_peaks=None,
            plot_aperiodic=True,
            plt_log=False,
            add_legend=True,
            save_fig=False,
            file_name=None,
            file_path=None,
            ax=None,
            data_kwargs=None,
            model_kwargs=None,
            aperiodic_kwargs=None,
            peak_kwargs=None,
            **plot_kwargs):
    """Plot the power spectrum and model fit results from a FOOOF object.

    Parameters
    ----------
    fm : FOOOF
        Object containing a power spectrum and (optionally) results from fitting.
    plot_peaks : None or {'shade', 'dot', 'outline', 'line'}, optional
        What kind of approach to take to plot peaks. If None, peaks are not specifically plotted.
        Can also be a combination of approaches, separated by '-', for example: 'shade-line'.
    plot_aperiodic : boolean, optional, default: True
        Whether to plot the aperiodic component of the model fit.
    plt_log : boolean, optional, default: False
        Whether to plot the frequency values in log10 spacing.
    add_legend : boolean, optional, default: False
        Whether to add a legend describing the plot components.
    save_fig : bool, optional, default: False
        Whether to save out a copy of the plot.
    file_name : str, optional
        Name to give the saved out file.
    file_path : str, optional
        Path to directory to save to. If None, saves to current directory.
    ax : matplotlib.Axes, optional
        Figure axes upon which to plot.
    data_kwargs, model_kwargs, aperiodic_kwargs, peak_kwargs : None or dict, optional
        Keyword arguments to pass into the plot call for each plot element.
    **plot_kwargs
        Keyword arguments to pass into the ``style_plot``.

    Notes
    -----
    Since FOOOF objects store power values in log spacing,
    the y-axis (power) is plotted in log spacing by default.
    """

    ax = check_ax(ax, PLT_FIGSIZES['spectral'])

    # Log settings - note that power values in FOOOF objects are already logged
    log_freqs = plt_log
    log_powers = False

    # Plot the data, if available
    if fm.has_data:
        data_defaults = {
            'color': PLT_COLORS['data'],
            'linewidth': 2.0,
            'label': 'Original Spectrum' if add_legend else None
        }
        data_kwargs = check_plot_kwargs(data_kwargs, data_defaults)
        plot_spectra(fm.freqs,
                     fm.power_spectrum,
                     log_freqs,
                     log_powers,
                     ax=ax,
                     **data_kwargs)

    # Add the full model fit, and components (if requested)
    if fm.has_model:
        model_defaults = {
            'color': PLT_COLORS['model'],
            'linewidth': 3.0,
            'alpha': 0.5,
            'label': 'Full Model Fit' if add_legend else None
        }
        model_kwargs = check_plot_kwargs(model_kwargs, model_defaults)
        plot_spectra(fm.freqs,
                     fm.fooofed_spectrum_,
                     log_freqs,
                     log_powers,
                     ax=ax,
                     **model_kwargs)

        # Plot the aperiodic component of the model fit
        if plot_aperiodic:
            aperiodic_defaults = {
                'color': PLT_COLORS['aperiodic'],
                'linewidth': 3.0,
                'alpha': 0.5,
                'linestyle': 'dashed',
                'label': 'Aperiodic Fit' if add_legend else None
            }
            aperiodic_kwargs = check_plot_kwargs(aperiodic_kwargs,
                                                 aperiodic_defaults)
            plot_spectra(fm.freqs,
                         fm._ap_fit,
                         log_freqs,
                         log_powers,
                         ax=ax,
                         **aperiodic_kwargs)

        # Plot the periodic components of the model fit
        if plot_peaks:
            _add_peaks(fm, plot_peaks, plt_log, ax, peak_kwargs)

    # Apply default style to plot
    style_spectrum_plot(ax, log_freqs, True)
示例#5
0
文件: spectra.py 项目: parhalje/fooof
def plot_spectra_yshade(freqs,
                        power_spectra,
                        shade='std',
                        average='mean',
                        scale=1,
                        log_freqs=False,
                        log_powers=False,
                        color=None,
                        label=None,
                        ax=None,
                        **plot_kwargs):
    """Plot standard deviation or error as a shaded region around the mean spectrum.

    Parameters
    ----------
    freqs : 1d array
        Frequency values, to be plotted on the x-axis.
    power_spectra : 1d or 2d array
        Power values, to be plotted on the y-axis. ``shade`` must be provided if 1d.
    shade : 'std', 'sem', 1d array or callable, optional, default: 'std'
        Approach for shading above/below the mean spectrum.
    average : 'mean', 'median' or callable, optional, default: 'mean'
        Averaging approach for the average spectrum to plot. Only used if power_spectra is 2d.
    scale : int, optional, default: 1
        Factor to multiply the plotted shade by.
    log_freqs : bool, optional, default: False
        Whether to plot the frequency axis in log spacing.
    log_powers : bool, optional, default: False
        Whether to plot the power axis in log spacing.
    color : str, optional, default: None
        Line color of the spectrum.
    label : str, optional, default: None
        Legend label for the spectrum.
    ax : matplotlib.Axes, optional
        Figure axes upon which to plot.
    **plot_kwargs
        Keyword arguments to be passed to `plot_spectra` or to the plot call.
    """

    if (isinstance(shade, str)
            or isfunction(shade)) and power_spectra.ndim != 2:
        raise ValueError('Power spectra must be 2d if shade is not given.')

    ax = check_ax(ax, plot_kwargs.pop('figsize', PLT_FIGSIZES['spectral']))

    # Set plot data & labels, logging if requested
    plt_freqs = np.log10(freqs) if log_freqs else freqs
    plt_powers = np.log10(power_spectra) if log_powers else power_spectra

    # Organize mean spectrum to plot
    avg_funcs = {'mean': np.mean, 'median': np.median}

    if isinstance(average, str) and plt_powers.ndim == 2:
        avg_powers = avg_funcs[average](plt_powers, axis=0)
    elif isfunction(average) and plt_powers.ndim == 2:
        avg_powers = average(plt_powers)
    else:
        avg_powers = plt_powers

    # Plot average power spectrum
    ax.plot(plt_freqs, avg_powers, linewidth=2.0, color=color, label=label)

    # Organize shading to plot
    shade_funcs = {'std': np.std, 'sem': sem}

    if isinstance(shade, str):
        shade_vals = scale * shade_funcs[shade](plt_powers, axis=0)
    elif isfunction(shade):
        shade_vals = scale * shade(plt_powers)
    else:
        shade_vals = scale * shade

    upper_shade = avg_powers + shade_vals
    lower_shade = avg_powers - shade_vals

    # Plot +/- yshading around spectrum
    alpha = plot_kwargs.pop('alpha', 0.25)
    ax.fill_between(plt_freqs,
                    lower_shade,
                    upper_shade,
                    alpha=alpha,
                    color=color,
                    **plot_kwargs)

    style_spectrum_plot(ax, log_freqs, log_powers)
示例#6
0
def plot_annotated_peak_search(fm):
    """Plot a series of plots illustrating the peak search from a flattened spectrum.

    Parameters
    ----------
    fm : FOOOF
        FOOOF object, with model fit, data and settings available.
    """

    # Recalculate the initial aperiodic fit and flattened spectrum that
    #   is the same as the one that is used in the peak fitting procedure
    flatspec = fm.power_spectrum - \
        gen_aperiodic(fm.freqs, fm._robust_ap_fit(fm.freqs, fm.power_spectrum))

    # Calculate ylims of the plot that are scaled to the range of the data
    ylims = [
        min(flatspec) - 0.1 * np.abs(min(flatspec)),
        max(flatspec) + 0.1 * max(flatspec)
    ]

    # Loop through the iterative search for each peak
    for ind in range(fm.n_peaks_ + 1):

        # This forces the creation of a new plotting axes per iteration
        ax = check_ax(None, PLT_FIGSIZES['spectral'])

        plot_spectra(fm.freqs,
                     flatspec,
                     ax=ax,
                     linewidth=2.5,
                     label='Flattened Spectrum',
                     color=PLT_COLORS['data'])
        plot_spectra(fm.freqs,
                     [fm.peak_threshold * np.std(flatspec)] * len(fm.freqs),
                     ax=ax,
                     label='Relative Threshold',
                     color='orange',
                     linewidth=2.5,
                     linestyle='dashed')
        plot_spectra(fm.freqs, [fm.min_peak_height] * len(fm.freqs),
                     ax=ax,
                     label='Absolute Threshold',
                     color='red',
                     linewidth=2.5,
                     linestyle='dashed')

        maxi = np.argmax(flatspec)
        ax.plot(fm.freqs[maxi],
                flatspec[maxi],
                '.',
                color=PLT_COLORS['periodic'],
                alpha=0.75,
                markersize=30)

        ax.set_ylim(ylims)
        ax.set_title('Iteration #' + str(ind + 1), fontsize=16)

        if ind < fm.n_peaks_:

            gauss = gaussian_function(fm.freqs, *fm.gaussian_params_[ind, :])
            plot_spectra(fm.freqs,
                         gauss,
                         ax=ax,
                         label='Gaussian Fit',
                         color=PLT_COLORS['periodic'],
                         linestyle=':',
                         linewidth=3.0)

            flatspec = flatspec - gauss

        style_spectrum_plot(ax, False, True)
示例#7
0
def plot_annotated_model(fm,
                         plt_log=False,
                         annotate_peaks=True,
                         annotate_aperiodic=True,
                         ax=None):
    """Plot a an annotated power spectrum and model, from a FOOOF object.

    Parameters
    ----------
    fm : FOOOF
        FOOOF object, with model fit, data and settings available.
    plt_log : boolean, optional, default: False
        Whether to plot the frequency values in log10 spacing.
    annotate_peaks : boolean, optional, default: True
        Whether to annotate the periodic components of the model fit.
    annotate_aperiodic : boolean, optional, default: True
        Whether to annotate the aperiodic components of the model fit.
    ax : matplotlib.Axes, optional
        Figure axes upon which to plot.

    Raises
    ------
    NoModelError
        If there are no model results available to plot.
    """

    # Check that model is available
    if not fm.has_model:
        raise NoModelError("No model is available to plot, can not proceed.")

    # Settings
    fontsize = 15
    lw1 = 4.0
    lw2 = 3.0
    ms1 = 12

    # Create the baseline figure
    ax = check_ax(ax, PLT_FIGSIZES['spectral'])
    fm.plot(plot_peaks='dot-shade-width',
            plt_log=plt_log,
            ax=ax,
            data_kwargs={
                'lw': lw1,
                'alpha': 0.6
            },
            aperiodic_kwargs={
                'lw': lw1,
                'zorder': 10
            },
            model_kwargs={
                'lw': lw1,
                'alpha': 0.5
            },
            peak_kwargs={
                'dot': {
                    'color': PLT_COLORS['periodic'],
                    'ms': ms1,
                    'lw': lw2
                },
                'shade': {
                    'color': PLT_COLORS['periodic']
                },
                'width': {
                    'color': PLT_COLORS['periodic'],
                    'alpha': 0.75,
                    'lw': lw2
                }
            })

    # Get freqs for plotting, and convert to log if needed
    freqs = fm.freqs if not plt_log else np.log10(fm.freqs)

    ## Buffers: for spacing things out on the plot (scaled by plot values)
    x_buff1 = max(freqs) * 0.1
    x_buff2 = max(freqs) * 0.25
    y_buff1 = 0.15 * np.ptp(ax.get_ylim())
    shrink = 0.1

    # There is a bug in annotations for some perpendicular lines, so add small offset
    #   See: https://github.com/matplotlib/matplotlib/issues/12820. Fixed in 3.2.1.
    bug_buff = 0.000001

    if annotate_peaks and fm.n_peaks_:

        # Extract largest peak, to annotate, grabbing gaussian params
        gauss = get_band_peak_fm(fm,
                                 fm.freq_range,
                                 attribute='gaussian_params')

        peak_ctr, peak_hgt, peak_wid = gauss
        bw_freqs = [
            peak_ctr - 0.5 * compute_fwhm(peak_wid),
            peak_ctr + 0.5 * compute_fwhm(peak_wid)
        ]

        if plt_log:
            peak_ctr = np.log10(peak_ctr)
            bw_freqs = np.log10(bw_freqs)

        peak_top = fm.power_spectrum[nearest_ind(freqs, peak_ctr)]

        # Annotate Peak CF
        ax.annotate('Center Frequency',
                    xy=(peak_ctr, peak_top),
                    xytext=(peak_ctr, peak_top + np.abs(0.6 * peak_hgt)),
                    verticalalignment='center',
                    horizontalalignment='center',
                    arrowprops=dict(facecolor=PLT_COLORS['periodic'],
                                    shrink=shrink),
                    color=PLT_COLORS['periodic'],
                    fontsize=fontsize)

        # Annotate Peak PW
        ax.annotate('Power',
                    xy=(peak_ctr, peak_top - 0.3 * peak_hgt),
                    xytext=(peak_ctr + x_buff1, peak_top - 0.3 * peak_hgt),
                    verticalalignment='center',
                    arrowprops=dict(facecolor=PLT_COLORS['periodic'],
                                    shrink=shrink),
                    color=PLT_COLORS['periodic'],
                    fontsize=fontsize)

        # Annotate Peak BW
        bw_buff = (peak_ctr - bw_freqs[0]) / 2
        ax.annotate('Bandwidth',
                    xy=(peak_ctr - bw_buff + bug_buff,
                        peak_top - (0.5 * peak_hgt)),
                    xytext=(peak_ctr - bw_buff, peak_top - (1.5 * peak_hgt)),
                    verticalalignment='center',
                    horizontalalignment='right',
                    arrowprops=dict(facecolor=PLT_COLORS['periodic'],
                                    shrink=shrink),
                    color=PLT_COLORS['periodic'],
                    fontsize=fontsize,
                    zorder=20)

    if annotate_aperiodic:

        # Annotate Aperiodic Offset
        #   Add a line to indicate offset, without adjusting plot limits below it
        ax.set_autoscaley_on(False)
        ax.plot([freqs[0], freqs[0]],
                [ax.get_ylim()[0], fm.fooofed_spectrum_[0]],
                color=PLT_COLORS['aperiodic'],
                linewidth=lw2,
                alpha=0.5)
        ax.annotate('Offset',
                    xy=(freqs[0] + bug_buff, fm.power_spectrum[0] - y_buff1),
                    xytext=(freqs[0] - x_buff1,
                            fm.power_spectrum[0] - y_buff1),
                    verticalalignment='center',
                    horizontalalignment='center',
                    arrowprops=dict(facecolor=PLT_COLORS['aperiodic'],
                                    shrink=shrink),
                    color=PLT_COLORS['aperiodic'],
                    fontsize=fontsize)

        # Annotate Aperiodic Knee
        if fm.aperiodic_mode == 'knee':

            # Find the knee frequency point to annotate
            knee_freq = compute_knee_frequency(
                fm.get_params('aperiodic', 'knee'),
                fm.get_params('aperiodic', 'exponent'))
            knee_freq = np.log10(knee_freq) if plt_log else knee_freq
            knee_pow = fm.power_spectrum[nearest_ind(freqs, knee_freq)]

            # Add a dot to the plot indicating the knee frequency
            ax.plot(knee_freq,
                    knee_pow,
                    'o',
                    color=PLT_COLORS['aperiodic'],
                    ms=ms1 * 1.5,
                    alpha=0.7)

            ax.annotate('Knee',
                        xy=(knee_freq, knee_pow),
                        xytext=(knee_freq - x_buff2, knee_pow - y_buff1),
                        verticalalignment='center',
                        arrowprops=dict(facecolor=PLT_COLORS['aperiodic'],
                                        shrink=shrink),
                        color=PLT_COLORS['aperiodic'],
                        fontsize=fontsize)

        # Annotate Aperiodic Exponent
        mid_ind = int(len(freqs) / 2)
        ax.annotate('Exponent',
                    xy=(freqs[mid_ind], fm.power_spectrum[mid_ind]),
                    xytext=(freqs[mid_ind] - x_buff2,
                            fm.power_spectrum[mid_ind] - y_buff1),
                    verticalalignment='center',
                    arrowprops=dict(facecolor=PLT_COLORS['aperiodic'],
                                    shrink=shrink),
                    color=PLT_COLORS['aperiodic'],
                    fontsize=fontsize)

    # Apply style to plot & tune grid styling
    style_spectrum_plot(ax, plt_log, True)
    ax.grid(True, alpha=0.5)

    # Add labels to plot in the legend
    da_patch = mpatches.Patch(color=PLT_COLORS['data'], label='Original Data')
    ap_patch = mpatches.Patch(color=PLT_COLORS['aperiodic'],
                              label='Aperiodic Parameters')
    pe_patch = mpatches.Patch(color=PLT_COLORS['periodic'],
                              label='Peak Parameters')
    mo_patch = mpatches.Patch(color=PLT_COLORS['model'], label='Full Model')

    handles = [
        da_patch, ap_patch if annotate_aperiodic else None,
        pe_patch if annotate_peaks else None, mo_patch
    ]
    handles = [el for el in handles if el is not None]

    ax.legend(handles=handles, handlelength=1, fontsize='x-large')