def test_fit(self): print('test fit') mgs, poolayer, concat_layer, auto_cascade = self._init() model = Graph() model.add(mgs) model.add(poolayer) model.add(concat_layer) model.add(auto_cascade) model.fit(self.x_train, self.y_train)
def test_fit_transform_full(self): print("test fit_transform_full") mgs, poolayer, concat_layer, auto_cascade = self._init() model = Graph() model.add(mgs) model.add(poolayer) model.add(concat_layer) model.add(auto_cascade) model.fit_transform(self.x_train, self.y_train, self.x_test, self.y_test)
def test_graph_transform(self): print('test graph transform') gc, agc = self._init() agc.keep_in_mem = True model = Graph() model.add(agc) model.fit(self.x_train, self.y_train) model.transform(self.x_test)
def test_graph_fit_evaluate(self): print('test fit and evaluate') gc, agc = self._init() agc.keep_in_mem = True model = Graph() model.add(agc) model.fit(self.x_train, self.y_train) model.evaluate(self.x_test, self.y_test)
print('x_test.shape: {}'.format(x_test.shape)) est_configs = [ ExtraRandomForestConfig(), ExtraRandomForestConfig(), ExtraRandomForestConfig(), ExtraRandomForestConfig(), RandomForestConfig(), RandomForestConfig(), RandomForestConfig(), RandomForestConfig() ] data_save_dir = osp.join(get_data_save_base(), 'uci_yeast') model_save_dir = osp.join(get_model_save_base(), 'uci_yeast') auto_cascade = AutoGrowingCascadeLayer(est_configs=est_configs, early_stopping_rounds=4, n_classes=10, data_save_dir=data_save_dir, model_save_dir=model_save_dir, distribute=False, seed=0) model = Graph() model.add(auto_cascade) model.fit_transform(x_train, y_train, x_test, y_test) print("time cost: {}".format(time.time() - start_time))
rf2 = RandomForestConfig(n_folds=3, min_samples_leaf=10) est_for_windows = [[rf1, rf2], [rf1, rf2], [rf1, rf2]] mgs = MultiGrainScanLayer(windows=windows, est_for_windows=est_for_windows, n_class=6) pools = [[MeanPooling(), MeanPooling()], [MeanPooling(), MeanPooling()], [MeanPooling(), MeanPooling()]] pool_layer = PoolingLayer(pools=pools) concat_layer = ConcatLayer() est_configs = Basic4x2() auto_cascade = AutoGrowingCascadeLayer(est_configs=est_configs, early_stopping_rounds=4, n_classes=6, look_index_cycle=[[0, 1], [2, 3], [4, 5]]) model = Graph() model.add(mgs) model.add(pool_layer) # model.add(concat_layer) model.add(auto_cascade) model.fit_transform(x_train, y_train, x_test, y_test)
def test_fit_evaluate(self): print("test fit and evaluate") mgs, poolayer, concat_layer, auto_cascade = self._init() mgs.keep_in_mem = True auto_cascade.keep_in_mem = True model = Graph() model.add(mgs) model.add(poolayer) model.add(concat_layer) model.add(auto_cascade) model.fit(self.x_train, self.y_train) model.evaluate(self.x_test, self.y_test)
def test_transform(self): print("test transform") mgs, poolayer, concat_layer, auto_cascade = self._init() mgs.keep_in_mem = True auto_cascade.keep_in_mem = True model = Graph() model.add(mgs) model.add(poolayer) model.add(concat_layer) model.add(auto_cascade) model.fit(self.x_train, self.y_train) model.transform(self.x_test)
def test_graph_summary(self): model = Graph() model.add(self.mgs, self.poolayer, self.concat_layer, self.auto_cascade) model.summary()
def test_uci_graph(self): print('test uci_graph') gc, agc = self._init() model = Graph() model.add(agc) model.fit_transform(self.x_train, self.y_train, self.x_test, self.y_test)