示例#1
0
def calculate_burial(kd, position, directions, radius=5, step_size=1., max_dist=500):
    '''
    Calculate how far we need to travel from this position until we
    arrive at a region with no atoms within the search radius.
    (we assume we have got out of the protein)

    :param kd: A Bio.KDTree containing all the other atoms in this
              molecule
    :param position: The position to start at
    :param directions: The directions to travel in
    :param radius: The radius within which to check for neighbors
    :param step_size: How far to step at each point in the simulation
    :param max_dist: The maximal distance to travel from the center
    '''
    distances = []

    for direction in directions:
        # we assume that each direction is a unit vector
        step_vector = step_size * direction
        new_pos = np.array(position)

        while ftuv.magnitude((new_pos - position)) < max_dist:
            kd.search(new_pos, float(radius))
            # kd.all_search(10)
            neighbors = kd.get_indices()

            distance = ftuv.magnitude(new_pos - position)
            if len(neighbors) == 0:
                distances += [ftuv.magnitude(new_pos - position)]
                break

            new_pos += step_vector

    return min(distances)
示例#2
0
文件: ccd.py 项目: pkerpedjiev/ernwin
def main():
    # Moving segment
    moving=make_random_chain(20)
    # Fixed segment 
    # Last three residues of the moving segment
    # after applying a random rotation/translation
    fixed=rotate_last_three(moving)

    angles1 = [vec_angle(moving[i-1] - moving[i-2], moving[i] - moving[i-1]) for i in range(2, len(moving))]
    distances1 = [magnitude(moving[i] - moving[i-1]) for i in range(1, len(moving))]

    #print "moving:", moving

    if len(sys.argv) < 2:
        moving = ccd(moving, fixed, 10, True)
    else:
        moving = ccd(moving, fixed, iterations = int(sys.argv[1]), print_d = False)

    #print "moving:", moving

    angles2 = [vec_angle(moving[i-1] - moving[i-2], moving[i] - moving[i-1]) for i in range(2, len(moving))]
    distances2 = [magnitude(moving[i] - moving[i-1]) for i in range(1, len(moving))]

    assert(allclose(distances1, distances2))
    assert(allclose(angles1, angles2))
示例#3
0
def main():
    # Moving segment
    moving = make_random_chain(20)
    # Fixed segment
    # Last three residues of the moving segment
    # after applying a random rotation/translation
    fixed = rotate_last_three(moving)

    angles1 = [
        vec_angle(moving[i - 1] - moving[i - 2], moving[i] - moving[i - 1])
        for i in range(2, len(moving))
    ]
    distances1 = [
        magnitude(moving[i] - moving[i - 1]) for i in range(1, len(moving))
    ]

    #print "moving:", moving

    if len(sys.argv) < 2:
        moving = ccd(moving, fixed, 10, True)
    else:
        moving = ccd(moving, fixed, iterations=int(sys.argv[1]), print_d=False)

    #print "moving:", moving

    angles2 = [
        vec_angle(moving[i - 1] - moving[i - 2], moving[i] - moving[i - 1])
        for i in range(2, len(moving))
    ]
    distances2 = [
        magnitude(moving[i] - moving[i - 1]) for i in range(1, len(moving))
    ]

    assert (allclose(distances1, distances2))
    assert (allclose(angles1, angles2))
示例#4
0
 def test_ProjectionMatchEnergy_eval_energy_correct_projection(self):
     ENERGY_TOLERANCE=0.2
     VECTOR_A_TOLERANCE=0.05
     e=self.energy1a.eval_energy(self.sm1)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir=np.array([0.362,0.023, -0.826])
     targetdir=targetdir/ftuv.magnitude(targetdir)
     if self.energy1a.projDir[2]>0:
         targetdir=-1*targetdir
     nptest.assert_allclose(self.energy1a.projDir, targetdir,atol=VECTOR_A_TOLERANCE)
     e=self.energy1b.eval_energy(self.sm1)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir= np.array([-0.193,-0.319,0.074])
     targetdir=targetdir/ftuv.magnitude(targetdir)
     if self.energy1b.projDir[1]>0:
         targetdir=-1*targetdir
     nptest.assert_allclose(self.energy1b.projDir, targetdir, atol=VECTOR_A_TOLERANCE)
     e=self.energy2a.eval_energy(self.sm2)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir=np.array([-0.223,0.048,-0.579])
     targetdir=targetdir/ftuv.magnitude(targetdir)
     if self.energy2a.projDir[2]>0:
         targetdir=-1*targetdir
     nptest.assert_allclose(self.energy2a.projDir, targetdir,atol=VECTOR_A_TOLERANCE)
     e=self.energy2b.eval_energy(self.sm2)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir=np.array([-0.464,-0.345,-0.192])
     targetdir=targetdir/ftuv.magnitude(targetdir)
     if self.energy2b.projDir[2]>0:
         targetdir=-1*targetdir
     nptest.assert_allclose(self.energy2b.projDir, targetdir, atol=VECTOR_A_TOLERANCE)
示例#5
0
    def test_virtual_residue_atoms(self):
        cg = ftmc.from_pdb('test/forgi/threedee/data/1y26.pdb')

        ftug.add_virtual_residues(cg, 's0')
        ftug.add_virtual_residues(cg, 's1')
        bases_to_test = []
        bases_to_test.append(ftug.virtual_residue_atoms(cg, 's0', 1, 0))
        bases_to_test.append(ftug.virtual_residue_atoms(cg, 's0', 2, 1))
        bases_to_test.append(ftug.virtual_residue_atoms(cg, 's1', 0, 0))

        #Assert that any two atoms of the same base within reasonable distance to each other
        #(https://en.wikipedia.org/wiki/Bond_length says than a CH-bond is >= 1.06A)
        for va in bases_to_test:
            for k1, v1 in va.items():
                for k2, v2 in va.items():
                    dist = ftuv.magnitude(v1 - v2)
                    self.assertLess(dist,
                                    30,
                                    msg="Nucleotide too big: "
                                    "Distance between {} and {} is {}".format(
                                        k1, k2, dist))
                    if k1 != k2:
                        dist = ftuv.magnitude(v1 - v2)
                        self.assertGreater(
                            dist,
                            0.8,
                            msg="Nucleotide too small: "
                            "Distance between {} and {} is {}".format(
                                k1, k2, dist))
示例#6
0
    def get_loop_stat(self, d):
        '''
        Return the statistics for this loop.

        These stats describe the relative orientation of the loop to the stem
        to which it is attached.

        @param d: The name of the loop
        '''
        loop_stat = ftms.LoopStat()
        loop_stat.pdb_name = self.name

        loop_stat.bp_length = self.get_length(d)
        loop_stat.phys_length = ftuv.magnitude(self.coords[d][1] - self.coords[d][0])

        stem1 = list(self.edges[d])[0]
        (s1b, s1e) = self.get_sides(stem1, d)

        stem1_vec = self.coords[stem1][s1b] - self.coords[stem1][s1e]
        twist1_vec = self.twists[stem1][s1b]
        bulge_vec = self.coords[d][1] - self.coords[d][0] + 0.1 * (stem1_vec / ftuv.magnitude(stem1_vec))

        (r,u,v) = ftug.get_stem_separation_parameters(stem1_vec, twist1_vec, 
                                                      bulge_vec)
        (loop_stat.r, loop_stat.u, loop_stat.v) = (r,u,v)

        return loop_stat
示例#7
0
 def test_new_traverse_and_build(self):
     self.sm.load_sampled_elems()
     self.sm.new_traverse_and_build()
     for k in self.cg_copy.defines.keys():
         log.info("k: %s file: %s, built %s", k,
                  ftuv.magnitude(self.cg_copy.coords.get_direction(k)),
                  ftuv.magnitude(self.sm.bg.coords.get_direction(k)))
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy),
                            0,
                            places=6)
示例#8
0
def output_all_distances(bg):
    for (key1, key2) in it.permutations(bg.defines.keys(), 2):
        if bg.has_connection(key1, key2):
            continue

        longrange = "N"

        if key2 in bg.longrange[key1]:
            longrange = "Y"

        #point1 = bg.get_point(key1)
        #point2 = bg.get_point(key2)

        try:
            (i1,i2) = cuv.line_segment_distance(bg.coords[key1][0], bg.coords[key1][1],
                                             bg.coords[key2][0], bg.coords[key2][1])


            if abs(cuv.magnitude(i2 - i1)) < 0.000001:
                continue

            vec1 = bg.coords[key1][1] - bg.coords[key1][0]
            '''
            basis = cuv.create_orthonormal_basis(vec1)
            coords2 = cuv.change_basis(i2 - i1, basis, cuv.standard_basis)
            (r, u, v) = cuv.spherical_cartesian_to_polar(coords2)
            '''
            v = cuv.vec_angle(vec1, i2 - i1)

        except KeyError as ke:
            #print >>sys.stderr, 'Skipping %s or %s.' % (key1, key2)
            continue

        seq1 = 'x'
        seq2 = 'x'


        '''
        receptor_angle = 0.
        if bg.get_type(key1) != 's' and bg.get_type(key1) != 'i' and bg.get_length(key1) > 1:
            seq1 = bg.get_seq(key1)
        if bg.get_type(key2) != 's' and bg.get_type(key2) != 'i'and bg.get_length(key2) > 1:
            seq2 = bg.get_seq(key2)
        if bg.get_type(key1) == 'l' and bg.get_type(key2) == 's':
            receptor_angle = cgg.receptor_angle(bg, key1, key2)
        '''

        print "%s %s %d %s %s %d %f %s %s %s %f" % (key1, 
                                     key1[0], 
                                     bg.get_length(key1),
                                     key2, 
                                     key2[0],
                                     bg.get_length(key2),
                                     cuv.magnitude(i2-i1),
                                     seq1, seq2, longrange, v)
示例#9
0
 def test_virtual_atoms_same_strand_nuc_distance(self):
     """ Distance between virtual atoms of nucleotides on same strand in stem"""
     for i in range(1,9):
         for j in range (i+1,10):
             dist=ftuv.magnitude(self.va1[i]["C1'"]-self.va1[j]["C1'"])
             self.assertLess(dist, 2.2+4.5*(j-i))#, msg="Distance between nucleotide {} and {} "
                                               #   "is too big: {}".format(i, j, dist))
             self.assertGreater(dist, 2*(j-i))#, msg="Distance between nucleotide {} and {} "
                                               #   "is too small: {}".format(i, j, dist))
     for i in range(63,71):
         for j in range (i+1,72):
             dist=ftuv.magnitude(self.va1[i]["C1'"]-self.va1[j]["C1'"])
             self.assertLess(dist, 2.2+4.5*(j-i))#, msg="Distance between nucleotide {} and {} "
                                                #  "is too big: {}".format(i, j, dist))
             self.assertGreater(dist, 2*(j-i))#, msg="Distance between nucleotide {} and {} "
示例#10
0
    def add_encompassing_cylinders(self, rna_plotter, cg, radius=7.):
        cylinders_to_stems = ftug.get_encompassing_cylinders(cg, radius)

        for stems in cylinders_to_stems.values():
            print("stems:", stems)

            points = []
            for s in stems:
                points += [cg.coords[s][0], cg.coords[s][1]]

            # create the linear regression
            data = np.array(points)
            datamean = data.mean(axis=0)

            uu, dd, vv = np.linalg.svd(data - datamean)

            furthest = max([ftuv.magnitude(d) for d in (data - datamean)])

            start_point = -furthest * vv[0] + datamean
            end_point = furthest * vv[0] + datamean

            rna_plotter.add_segment(start_point,
                                    end_point,
                                    'white',
                                    width=4,
                                    text='',
                                    key='')
示例#11
0
文件: pymol.py 项目: marcelTBI/forgi
    def add_encompassing_cylinders(self, cg, radius=7.):
        cylinders_to_stems = ftug.get_encompassing_cylinders(cg, radius)

        for stems in cylinders_to_stems.values():
            print "stems:", stems

            points = []
            for s in stems:
                points += [cg.coords[s][0], cg.coords[s][1]]
            
            # create the linear regression
            data = np.array(points)
            datamean = data.mean(axis=0)

    
            uu, dd, vv = np.linalg.svd(data - datamean)

            furthest = max([ftuv.magnitude(d) for d in (data - datamean) ])

            start_point = -furthest * vv[0] + datamean
            end_point = furthest * vv[0] + datamean

            self.add_segment(start_point, end_point, 'white', width=4, text='')


        print >>sys.stderr, "YOOOOOOOOOOOOOOOOOOOOOOO"
示例#12
0
def consensus(coords, structs):
    #structure 1 as reference:
    directions =[]
    for i in range(len(coords)):
        directions.append(structs[i].coords_to_directions())
    directions = np.array(directions)
    new_directions = []

    for i in range(len(directions[0])):
        av_dir = np.zeros(3)
        av_len = 0
        for j in range(len(coords)):
            av_dir+=directions[j,i]
            av_len+=ftuv.magnitude(directions[j,i])
        av_dir=ftuv.normalize(av_dir)
        av_len/=len(coords)
        new_directions.append(av_dir*av_len)
    
    flexibilities = []
    for i in range(len(directions[0])):
        flex = np.zeros(3)
        for j in range(len(coords)):
            flex+=(new_directions[i]-directions[j,i])**2
        flex/=len(coords)
        flexibilities.append(flex)
    sorted_defines = sorted(structs[0].defines.keys())
    for i,d in enumerate(sorted_defines):
        print(d, new_directions[i], "+-", flexibilities[i])
    
    consensus = copy.copy(structs[0])
    consensus.coords_from_directions(new_directions)
    consensus.to_cg_file("consensus.coord")
    print("File consensus.coord written") 
    return consensus
示例#13
0
 def test_create_orthonormal_basis(self):
     basis1 = ftuv.create_orthonormal_basis(np.array([0.0, 0.0, 2.0]))
     self.assertTrue(
         ftuv.is_almost_parallel(basis1[0], np.array([0., 0., 2.])))
     basis2 = ftuv.create_orthonormal_basis(np.array([0.0, 0.0, 2.0]),
                                            np.array([0.0, 3.6, 0.]))
     self.assertTrue(
         ftuv.is_almost_parallel(basis2[0], np.array([0., 0., 2.])))
     self.assertTrue(
         ftuv.is_almost_parallel(basis2[1], np.array([0., 3.6, 0])))
     basis3 = ftuv.create_orthonormal_basis(np.array([0.0, 0.0, 2.0]),
                                            np.array([0.0, 3.6, 0.]),
                                            np.array([1., 0, 0]))
     self.assertTrue(
         ftuv.is_almost_parallel(basis3[0], np.array([0., 0., 2.])))
     self.assertTrue(
         ftuv.is_almost_parallel(basis3[1], np.array([0., 3.6, 0])))
     self.assertTrue(
         ftuv.is_almost_parallel(basis3[2], np.array([1., 0, 0])))
     for basis in [basis1, basis2, basis3]:
         self.assertAlmostEqual(np.dot(basis[0], basis[1]), 0)
         self.assertAlmostEqual(np.dot(basis[0], basis[2]), 0)
         self.assertAlmostEqual(np.dot(basis[2], basis[1]), 0)
         for b in basis:
             self.assertAlmostEqual(ftuv.magnitude(b), 1)
示例#14
0
 def test_create_orthonormal_basis(self):
     #Note: If the input vectors are not orthogonal, the result are 3 vectors that might not form a basis.
     basis1 = ftuv.create_orthonormal_basis(np.array([0.0, 0.0, 2.0]))
     self.assertTrue(
         ftuv.is_almost_parallel(basis1[0], np.array([0., 0., 2.])))
     basis2 = ftuv.create_orthonormal_basis(np.array([0.0, 0.0, 2.0]),
                                            np.array([0.0, 3.6, 0.]))
     self.assertTrue(
         ftuv.is_almost_parallel(basis2[0], np.array([0., 0., 2.])))
     self.assertTrue(
         ftuv.is_almost_parallel(basis2[1], np.array([0., 3.6, 0])))
     basis3 = ftuv.create_orthonormal_basis(np.array([0.0, 0.0, 2.0]),
                                            np.array([0.0, 3.6, 0.]),
                                            np.array([1., 0, 0]))
     self.assertTrue(
         ftuv.is_almost_parallel(basis3[0], np.array([0., 0., 2.])))
     self.assertTrue(
         ftuv.is_almost_parallel(basis3[1], np.array([0., 3.6, 0])))
     self.assertTrue(
         ftuv.is_almost_parallel(basis3[2], np.array([1., 0, 0])))
     for basis in [basis1, basis2, basis3]:
         self.assertAlmostEqual(np.dot(basis[0], basis[1]), 0)
         self.assertAlmostEqual(np.dot(basis[0], basis[2]), 0)
         self.assertAlmostEqual(np.dot(basis[2], basis[1]), 0)
         for b in basis:
             self.assertAlmostEqual(ftuv.magnitude(b), 1)
示例#15
0
def get_initial_measurement_distance(chain_stems, chain_loop, handles):
    '''
    Calculate the rmsd between the measurement vectors after aligning
    the starts.

    @param chain_stems: The PDB coordinates of the chain with the stem.
    @param chain_loop: The PDB coordinates of the sampled loop.
    @param iterations: The number of iterations to use for the CCD loop closure.
    '''
    align_starts(chain_stems, chain_loop, handles)
    c1_target = []
    c1_sampled = []

    for i in range(2):
        target = np.array(get_measurement_vectors(chain_stems, handles[0], handles[1]))
        sampled = np.array(get_measurement_vectors(chain_loop, handles[2], handles[3]))
        '''
        for a in backbone_atoms:
            c1_target += [cuv.magnitude(
                chain_stems[handles[0] - i][a] - chain_stems[handles[1] + i][a])]
            c1_sampled += [cuv.magnitude(
                chain_loop[handles[2] - i][a] - chain_loop[handles[3] + i][a])]
    
    c1_target = np.array(c1_target)
    c1_sampled = np.array(c1_sampled)
        '''
    #return cbc.calc_rmsd(np.array(c1_target), np.array(c1_sampled))
    #return math.sqrt(sum([c ** 2 for c in c1_sampled - c1_target]))
    distances = [cuv.magnitude((sampled - target)[i]) for i in range(len(sampled))]
    rmsd = cuv.vector_set_rmsd(sampled, target)
    #dist = math.sqrt(sum([cuv.magnitude((sampled - target)[i]) ** 2 for i in range(len(sampled))]))
    return rmsd
示例#16
0
 def test_virtual_atoms_same_strand_nuc_distance(self):
     """ Distance between nucleotides on same strand in stem"""
     for i in range(1,9):
         for j in range (i+1,10):
             dist=ftuv.magnitude(self.va1[i]["C1'"]-self.va1[j]["C1'"])
             self.assertLess(dist, 2+4.5*(j-i), msg="Distance between nucleotide {} and {} "
                                                  "is too big: {}".format(i, j, dist))
             self.assertGreater(dist, 2*(j-i), msg="Distance between nucleotide {} and {} "
                                                  "is too small: {}".format(i, j, dist))
     for i in range(63,71):
         for j in range (i+1,72):
             dist=ftuv.magnitude(self.va1[i]["C1'"]-self.va1[j]["C1'"])
             self.assertLess(dist, 2+4.5*(j-i), msg="Distance between nucleotide {} and {} "
                                                  "is too big: {}".format(i, j, dist))
             self.assertGreater(dist, 2*(j-i), msg="Distance between nucleotide {} and {} "
                                                  "is too small: {}".format(i, j, dist)) 
示例#17
0
def consensus(coords, structs):
    #structure 1 as reference:
    directions = []
    for i in range(len(coords)):
        directions.append(structs[i].coords_to_directions())
    directions = np.array(directions)
    new_directions = []

    for i in range(len(directions[0])):
        av_dir = np.zeros(3)
        av_len = 0
        for j in range(len(coords)):
            av_dir += directions[j, i]
            av_len += ftuv.magnitude(directions[j, i])
        av_dir = ftuv.normalize(av_dir)
        av_len /= len(coords)
        new_directions.append(av_dir * av_len)

    flexibilities = []
    for i in range(len(directions[0])):
        flex = np.zeros(3)
        for j in range(len(coords)):
            flex += (new_directions[i] - directions[j, i])**2
        flex /= len(coords)
        flexibilities.append(flex)
    sorted_defines = sorted(structs[0].defines.keys())
    for i, d in enumerate(sorted_defines):
        print(d, new_directions[i], "+-", flexibilities[i])

    consensus = copy.copy(structs[0])
    consensus.coords_from_directions(new_directions)
    consensus.to_cg_file("consensus.coord")
    print("File consensus.coord written")
    return consensus
示例#18
0
 def test_virtual_atoms_distance_neighboring_atoms_in_nucleotide(self):
     # C2' is next to C3'
     for i in range(1, 9):
         dist = ftuv.magnitude(self.va1[i]["C3'"] - self.va1[i]["C2'"])
         self.assertLess(dist, 3, msg="Distance between C3' and C2' for nucleotide {} "
                                      "is too big: {}".format(i, dist))
         self.assertGreater(dist, 1, msg="Distance between C3' and C2' for nucleotide {} "
                            "is too small: {}".format(i, dist))
示例#19
0
 def test_virtual_atoms_distance_neighboring_atoms_in_nucleotide(self):
     # C2' is next to C3'
     for i in range(1,9):
         dist=ftuv.magnitude(self.va1[i]["C3'"]-self.va1[i]["C2'"])
         self.assertLess(dist, 3, msg="Distance between C3' and C2' for nucleotide {} "
                                      "is too big: {}".format(i, dist))
         self.assertGreater(dist, 1, msg="Distance between C3' and C2' for nucleotide {} "
                                      "is too small: {}".format(i, dist))
示例#20
0
def align_rnas(rnas):
    crds0 = rnas[0].get_ordered_virtual_residue_poss()
    centroid0 = ftuv.get_vector_centroid(crds0)
    print(centroid0)
    rnas[0].rotate_translate(centroid0, ftuv.identity_matrix)
    crds0 -= centroid0
    assert ftuv.magnitude(
        ftuv.get_vector_centroid(crds0)) < 10**-5, ftuv.magnitude(
            ftuv.get_vector_centroid(crds0))
    assert ftuv.magnitude(
        ftuv.get_vector_centroid(rnas[0].get_ordered_virtual_residue_poss())
    ) < 10**-5, ftuv.get_vector_centroid(
        rnas[0].get_ordered_virtual_residue_poss())
    for rna in rnas[1:]:
        crds1 = rna.get_ordered_virtual_residue_poss()
        centroid1 = ftuv.get_vector_centroid(crds1)
        crds1 -= centroid1
        rot_mat = ftms.optimal_superposition(crds0, crds1)
        rna.rotate_translate(centroid1, rot_mat)
        assert ftuv.magnitude(
            ftuv.get_vector_centroid(crds1)) < 10**-5, ftuv.magnitude(
                ftuv.get_vector_centroid(crds1))
        assert ftuv.magnitude(
            ftuv.get_vector_centroid(rna.get_ordered_virtual_residue_poss())
        ) < 10**-5, ftuv.magnitude(
            ftuv.get_vector_centroid(rna.get_ordered_virtual_residue_poss()))
示例#21
0
 def test_get_random_vector(self):
     for _ in range(REPEAT_TESTS_CONTAINING_RANDOM):
         vec=ftuv.get_random_vector()
         self.assertLessEqual(ftuv.magnitude(vec[0]),1.)
         vec1=ftuv.get_random_vector()
         vec2=ftuv.get_random_vector()
         self.assertTrue(all( vec1[j]!=vec2[j] for j in [0,1,2]),
                           msg="Repeated calls should generate different results."
                               "This tests depends on random values. if it fails, try running it again.")
示例#22
0
 def test_virtual_atoms_basepairdistance_in_stem(self):
     """ distance between two atoms that pair in stem """
     for i in range(1,10):
         for j in range (71,62):
             mindist=min(ftuv.magnitude(a1-a2) for a1 in self.va2[i].values() for a2 in self.va2[j].values())
             self.assertLess(dist, 20, msg="Distance between nucleotide {} and {} is too big: "
                                           "the minimal distance is {}".format(i, j, mindist))
             self.assertGreater(dist, 1.1, msg="Distance between nucleotide {} and {} is too small: "
                                           "the minimal distance is {}".format(i, j, mindist))
示例#23
0
 def test_virtual_atoms_basepairdistance_in_stem(self):
     """ distance between two atoms that pair in stem """
     for i in range(1,10):
         for j in range (71,62):
             mindist=min(ftuv.magnitude(a1-a2) for a1 in self.va2[i].values() for a2 in self.va2[j].values())
             self.assertLess(dist, 20, msg="Distance between nucleotide {} and {} is too big: "
                                           "the minimal distance is {}".format(i, j, mindist))
             self.assertGreater(dist, 1.1, msg="Distance between nucleotide {} and {} is too small: "
                                           "the minimal distance is {}".format(i, j, mindist))
示例#24
0
    def pymol_text_string(self):
        counter = 0
        s = ''
        pa_s = 'cmd.set("label_size", 20)\n'
        uids = []

        for (p, n, color, width, text, key) in self.segments:
            if len(text) == 0:
                continue

            # generate a unique identifier for every object so that other
            # scripts can add others that don't clash
            uid = str(uuid.uuid4()).replace('-', 'x')
            uids += [uid]

            s += "cgox_%s = []" % (uid) + '\n'
          
            if np.all(n==p):
                pos = n
                axes = [ [2,0,0], [0,2,0], [0,0,2] ]
            else:
                comp1 = cuv.normalize(n - p)

                ncl = cuv.get_non_colinear_unit_vector(comp1)

                comp2 = cuv.normalize(np.cross(ncl, comp1))
                comp3 = cuv.normalize(np.cross(ncl, comp2))

                pos = (p + n) / 2.0 + 3 * comp2

                axes = [list(comp1 * 2), list(comp2 * 2), list(comp3 * 2)]

            text = "%s: %.1f" % (text, cuv.magnitude(n - p))

            s += "cyl_text(cgox_%s, plain, %s, " % (uid, str(list(pos)))
            s += "\"%s\", 0.20, axes=%s)" % (text, str(axes)) + '\n'
            pa_s += "pa_%s = cmd.pseudoatom(pos=%s," % (uid, str(list(pos)))
            pa_s += "b=1.0, label=\"%s\")\n" % (text)
            counter += 1

        '''
        for (text, pos) in self.labels:
            uid = str(uuid.uuid4()).replace('-', 'x')
            uids += [uid]

            pa_s += "pa_%s = cmd.pseudoatom(pos=%s," % (uid, str(list(pos)))
            pa_s += "b=1.0, label=\"%s\")\n" % (text)
        '''

        s += "cmd.set(\"cgo_line_radius\",0.03)" + '\n'
        for i in range(counter):
            s += "cmd.load_cgo(cgox_%s, " % (uids[i])
            s += "\'cgox%s\')" % (uids[i]) + '\n'
        s += "cmd.zoom(\"all\", 2.0)" + '\n'

        return pa_s
示例#25
0
文件: pdb.py 项目: porteusconf/forgi
def _coplanar_point_indices(*points):
    """ Thanks to https://stackoverflow.com/a/18968498"""
    from numpy.linalg import svd
    points = np.array(points).T
    assert points.shape[0] <= points.shape[1], "There are only {} points in {} dimensions.".format(
        points.shape[1], points.shape[0])
    ctr = points.mean(axis=1)
    x = points - ctr[:, np.newaxis]
    M = np.dot(x, x.T)  # Could also use np.cov(x) here.
    normal = svd(M)[0][:, -1]

    out = []
    for i, p in enumerate(points.T):
        w = p - ctr
        oop_distance = ftuv.magnitude(
            np.dot(w, normal)) / ftuv.magnitude(normal)
        if oop_distance <= OOP_CUTOFF:
            out.append(i)
    return out, ctr, normal
示例#26
0
 def test_add_loop_for_hairpin(self):
     cg=ftmc.CoarseGrainRNA()
     cg.from_dotbracket("(((...)))")
     sm=fbm.SpatialModel(cg)
     sm.elem_defs={}
     sm.elem_defs["s0"]=self.example_stem_stat
     sm.elem_defs["h0"]=self.example_hairpin_stat        
     sm.stems['s0'] = sm.add_stem('s0', sm.elem_defs['s0'], fbm.StemModel(), 
                                   ftms.AngleStat(), (0,1))
     sm.add_loop("h0","s0")
     self.assertAlmostEqual(ftuv.magnitude(sm.bulges["h0"].mids[1] - sm.bulges["h0"].mids[0]), self.example_hairpin_stat.phys_length)
示例#27
0
 def test_virtual_atoms_intranucleotide_distances_stem_withsidechain(self):
     """ distance between two atoms of same nucleotide IN STEM """
     for i in it.chain(range(1,10)+range(63,72)):
         for k1, a1 in self.va2[i].items():
             for k2, a2 in self.va2[i].items():
                 if k1==k2: continue
                 dist=ftuv.magnitude(a1-a2)
                 self.assertLess(dist, 30, msg="Nucleotide {} too big: Distance between "
                                               "{} and {} is {}".format(i, k1, k2, dist) )
                 self.assertGreater(dist, 0.8, msg="Nucleotide {} too small: Distance between "
                                               "{} and {} is {}".format(i, k1, k2, dist) )
示例#28
0
 def test_get_random_vector(self):
     for _ in range(REPEAT_TESTS_CONTAINING_RANDOM):
         vec = ftuv.get_random_vector()
         self.assertLessEqual(ftuv.magnitude(vec[0]), 1.)
         vec1 = ftuv.get_random_vector()
         vec2 = ftuv.get_random_vector()
         self.assertTrue(
             all(vec1[j] != vec2[j] for j in [0, 1, 2]),
             msg="Repeated calls should generate different results."
             "This tests depends on random values. if it fails, try running it again."
         )
示例#29
0
 def test_virtual_atoms_intranucleotide_distances_stem_withsidechain(self):
     """ distance between two atoms of same nucleotide IN STEM """
     for i in it.chain(range(1,10)+range(63,72)):
         for k1, a1 in self.va2[i].items():
             for k2, a2 in self.va2[i].items():
                 if k1==k2: continue
                 dist=ftuv.magnitude(a1-a2)
                 self.assertLess(dist, 30, msg="Nucleotide {} too big: Distance between "
                                               "{} and {} is {}".format(i, k1, k2, dist) )
                 self.assertGreater(dist, 0.8, msg="Nucleotide {} too small: Distance between "
                                               "{} and {} is {}".format(i, k1, k2, dist) )
示例#30
0
文件: pymol.py 项目: marcelTBI/forgi
    def pymol_text_string(self):
        counter = 0
        s = ''
        pa_s = 'cmd.set("label_size", 20)\n'
        uids = []

        for (p, n, color, width, text) in self.segments:
            if len(text) == 0:
                continue

            # generate a unique identifier for every object so that other
            # scripts can add others that don't clash
            uid = str(uuid.uuid4()).replace('-', 'x')
            uids += [uid]

            s += "cgox_%s = []" % (uid) + '\n'

            comp1 = cuv.normalize(n - p)

            ncl = cuv.get_non_colinear_unit_vector(comp1)

            comp2 = cuv.normalize(np.cross(ncl, comp1))
            comp3 = cuv.normalize(np.cross(ncl, comp2))

            pos = (p + n) / 2.0 + 3 * comp2
            #pos = p + (n - p) / 4.0 + 3 * comp2
            axes = [list(comp1 * 2), list(comp2 * 2), list(comp3 * 2)]

            text = "%s: %.1f" % (text, cuv.magnitude(n - p))
            #text = "%s" % (text)

            s += "cyl_text(cgox_%s, plain, %s, " % (uid, str(list(pos)))
            s += "\"%s\", 0.20, axes=%s)" % (text, str(axes)) + '\n'
            pa_s += "pa_%s = cmd.pseudoatom(pos=%s," % (uid, str(list(pos)))
            pa_s += "b=1.0, label=\"%s\")\n" % (text)
            counter += 1

        '''
        for (text, pos) in self.labels:
            uid = str(uuid.uuid4()).replace('-', 'x')
            uids += [uid]

            pa_s += "pa_%s = cmd.pseudoatom(pos=%s," % (uid, str(list(pos)))
            pa_s += "b=1.0, label=\"%s\")\n" % (text)
        '''

        s += "cmd.set(\"cgo_line_radius\",0.03)" + '\n'
        for i in range(counter):
            s += "cmd.load_cgo(cgox_%s, " % (uids[i])
            s += "\'cgox%s\')" % (uids[i]) + '\n'
        s += "cmd.zoom(\"all\", 2.0)" + '\n'

        return pa_s
示例#31
0
def cylinderToThree(line, name):
    start, end = line
    length = ftuv.magnitude(end - start)
    look_at = end
    center = (start + end) / 2
    return {
        "center": center.tolist(),
        "look_at": look_at.tolist(),
        "length": length,
        "type": name[0],
        "name": name
    }
示例#32
0
文件: pymol.py 项目: marcelTBI/forgi
    def add_cone(self, p, n, color='white', width=2.4, text=''):
        if self.override_color is not None:
            color = self.override_color

        cone_extension = 2.
        cyl_vec = cuv.normalize(n-p)
        cyl_len = cuv.magnitude(n-p)

        new_width = width * (cyl_len + cone_extension) / cyl_len

        self.new_cones += [(np.array(p) - cone_extension * cyl_vec, np.array(n), color, width, text)]
        self.new_cones += [(np.array(n) + cone_extension * cyl_vec, np.array(p), color, width, text)]
示例#33
0
 def test_add_loop_for_hairpin(self):
     cg = ftmc.CoarseGrainRNA.from_dotbracket("(((...)))")
     sm = fbm.SpatialModel(cg)
     sm.elem_defs = {}
     sm.elem_defs["s0"] = self.example_stem_stat
     sm.elem_defs["h0"] = self.example_hairpin_stat
     sm.stems['s0'] = sm.add_stem('s0', sm.elem_defs['s0'], fbm.StemModel(),
                                  ftms.AngleStat(), (0, 1))
     sm.add_loop("h0", "s0")
     self.assertAlmostEqual(
         ftuv.magnitude(sm.bulges["h0"].mids[1] - sm.bulges["h0"].mids[0]),
         self.example_hairpin_stat.phys_length)
示例#34
0
    def add_cone(self, p, n, color='white', width=2.4, text=''):

        cone_extension = 2.
        cyl_vec = cuv.normalize(n - p)
        cyl_len = cuv.magnitude(n - p)

        new_width = width * (cyl_len + cone_extension) / cyl_len

        self.cones += [(np.array(p) - cone_extension * cyl_vec, np.array(n),
                        color, width, text)]
        self.cones += [(np.array(n) + cone_extension * cyl_vec, np.array(p),
                        color, width, text)]
示例#35
0
def get_relative_orientation(cg, l1, l2):
    '''
    Return how l1 is related to l2 in terms of three parameters. l2 should
    be the receptor of a potential A-Minor interaction, whereas l1 should
    be the donor.

        1. Distance between the closest points of the two elements
        2. The angle between l2 and the vector between the two
        3. The angle between the minor groove of l2 and the vector between
           l1 and l2
    '''
    (i1, i2) = ftuv.line_segment_distance(cg.coords[l1][0],
                                          cg.coords[l1][1],
                                          cg.coords[l2][0],
                                          cg.coords[l2][1])

    '''
    angle1 = ftuv.vec_angle(cg.coords[l2][1] - cg.coords[l2][0],
                           i2 - i1)
    '''
    angle1 = ftuv.vec_angle(cg.coords[l2][1] - cg.coords[l2][0],
                            cg.coords[l1][1] - cg.coords[l1][0])
    #fud.pv('angle1')

    tw = cg.get_twists(l2)

    if l2[0] != 's':
        angle2 = ftuv.vec_angle((tw[0] + tw[1]) / 2.,
                               i2 - i1)
    else:
        stem_len = cg.stem_length(l2)

        pos = ftuv.magnitude(i2 - cg.coords[l2][0]) / ftuv.magnitude(cg.coords[l2][1] - cg.coords[l2][0]) * stem_len
        vec = ftug.virtual_res_3d_pos_core(cg.coords[l2], cg.twists[l2], pos, stem_len)[1]
        angle2 = ftuv.vec_angle(vec,
                               i2 - i1)

    dist = ftug.element_distance(cg, l1, l2)

    return (dist, angle1, angle2)
示例#36
0
 def test_ProjectionMatchEnergy_eval_energy_correct_projection(self):
     ENERGY_TOLERANCE = 0.2
     VECTOR_A_TOLERANCE = 0.05
     e = self.energy1a.eval_energy(self.sm1)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir = np.array([0.362, 0.023, -0.826])
     targetdir = targetdir / ftuv.magnitude(targetdir)
     if self.energy1a.projDir[2] > 0:
         targetdir = -1 * targetdir
     nptest.assert_allclose(self.energy1a.projDir,
                            targetdir,
                            atol=VECTOR_A_TOLERANCE)
     e = self.energy1b.eval_energy(self.sm1)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir = np.array([-0.193, -0.319, 0.074])
     targetdir = targetdir / ftuv.magnitude(targetdir)
     if self.energy1b.projDir[1] > 0:
         targetdir = -1 * targetdir
     nptest.assert_allclose(self.energy1b.projDir,
                            targetdir,
                            atol=VECTOR_A_TOLERANCE)
     e = self.energy2a.eval_energy(self.sm2)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir = np.array([-0.223, 0.048, -0.579])
     targetdir = targetdir / ftuv.magnitude(targetdir)
     if self.energy2a.projDir[2] > 0:
         targetdir = -1 * targetdir
     nptest.assert_allclose(self.energy2a.projDir,
                            targetdir,
                            atol=VECTOR_A_TOLERANCE)
     e = self.energy2b.eval_energy(self.sm2)
     self.assertLessEqual(e, ENERGY_TOLERANCE)
     targetdir = np.array([-0.464, -0.345, -0.192])
     targetdir = targetdir / ftuv.magnitude(targetdir)
     if self.energy2b.projDir[2] > 0:
         targetdir = -1 * targetdir
     nptest.assert_allclose(self.energy2b.projDir,
                            targetdir,
                            atol=VECTOR_A_TOLERANCE)
示例#37
0
    def test_virtual_residue_atoms(self):
        cg, = ftmc.CoarseGrainRNA.from_pdb('test/forgi/threedee/data/1y26.pdb')

        ftug.add_virtual_residues(cg, 's0')
        ftug.add_virtual_residues(cg, 's1')
        bases_to_test = []
        bases_to_test.append(ftug.virtual_residue_atoms(cg, 's0', 1, 0))
        bases_to_test.append(ftug.virtual_residue_atoms(cg, 's0', 2, 1))
        bases_to_test.append(ftug.virtual_residue_atoms(cg, 's1', 0, 0))

        # Assert that any two atoms of the same base within reasonable distance to each other
        #(https://en.wikipedia.org/wiki/Bond_length says than a CH-bond is >= 1.06A)
        for va in bases_to_test:
            for k1, v1 in va.items():
                for k2, v2 in va.items():
                    dist = ftuv.magnitude(v1 - v2)
                    self.assertLess(dist, 30, msg="Nucleotide too big: "
                                    "Distance between {} and {} is {}".format(k1, k2, dist))
                    if k1 != k2:
                        dist = ftuv.magnitude(v1 - v2)
                        self.assertGreater(dist, 0.8, msg="Nucleotide too small: "
                                           "Distance between {} and {} is {}".format(k1, k2, dist))
示例#38
0
def calculate_burial(kd,
                     position,
                     directions,
                     radius=5,
                     step_size=1.,
                     max_dist=500):
    '''
    Calculate how far we need to travel from this position until we
    arrive at a region with no atoms within the search radius.
    (we assume we have got out of the protein)

    :param kd: A Bio.KDTree containing all the other atoms in this
              molecule
    :param position: The position to start at
    :param directions: The directions to travel in
    :param radius: The radius within which to check for neighbors
    :param step_size: How far to step at each point in the simulation
    :param max_dist: The maximal distance to travel from the center
    '''
    distances = []

    for direction in directions:
        # we assume that each direction is a unit vector
        step_vector = step_size * direction
        new_pos = np.array(position)

        while ftuv.magnitude((new_pos - position)) < max_dist:
            kd.search(new_pos, float(radius))
            #kd.all_search(10)
            neighbors = kd.get_indices()

            distance = ftuv.magnitude(new_pos - position)
            if len(neighbors) == 0:
                distances += [ftuv.magnitude(new_pos - position)]
                break

            new_pos += step_vector

    return min(distances)
示例#39
0
文件: pdb.py 项目: porteusconf/forgi
def noncovalent_distances(chain, cutoff=0.3):
    '''
    Print out the distances between all non-covalently bonded atoms
    which are closer than cutoff to each other.

    :param chain: The Bio.PDB chain.
    :param cutoff: The maximum distance
    '''
    all_atoms = bpdb.Selection.unfold_entities(chain, 'A')
    ns = bpdb.NeighborSearch(all_atoms)

    contacts = ns.search_all(cutoff)

    return [ftuv.magnitude(c[1] - c[0]) for c in contacts if not is_covalent(c)]
示例#40
0
文件: pdb.py 项目: tcarlile/forgi
def noncovalent_distances(chain, cutoff=0.3):
    '''
    Print out the distances between all non-covalently bonded atoms
    which are closer than cutoff to each other.

    :param chain: The Bio.PDB chain.
    :param cutoff: The maximum distance
    '''
    all_atoms = bpdb.Selection.unfold_entities(chain, 'A')
    ns = bpdb.NeighborSearch(all_atoms)

    contacts = ns.search_all(cutoff)

    return [ftuv.magnitude(c[1] - c[0]) for c in contacts if not is_covalent(c)]
示例#41
0
文件: pymol.py 项目: tcarlile/forgi
    def add_dashed(self, point1, point2, width=0.3):
        '''
        Add a dashed line from point1 to point2.
        '''
        dash_length = 0.6
        gap_length = dash_length * 2
        direction = ftuv.normalize(point2 - point1)

        num_dashes = ftuv.magnitude(point2 - point1) / (dash_length + gap_length)

        for i in range(int(num_dashes)):
            self.add_segment(point1 + i * (dash_length + gap_length) * direction, 
                             point1 + (i * (dash_length + gap_length) + dash_length) * direction, "purple",
                             width, "", key=key)
示例#42
0
    def add_dashed(self, point1, point2, width=0.3):
        '''
        Add a dashed line from point1 to point2.
        '''
        dash_length = 0.6
        gap_length = dash_length * 2
        direction = ftuv.normalize(point2 - point1)

        num_dashes = ftuv.magnitude(point2 - point1) / (dash_length + gap_length)

        for i in range(int(num_dashes)):
            self.add_segment(point1 + i * (dash_length + gap_length) * direction, 
                             point1 + (i * (dash_length + gap_length) + dash_length) * direction, "purple",
                             width, "", key=key)
示例#43
0
 def test_create_orthonormal_basis(self):
     #Note: If the input vectors are not orthogonal, the result are 3 vectors that might not form a basis.
     basis1=ftuv.create_orthonormal_basis(np.array([0.0,0.0,2.0]))      
     self.assertTrue( ftuv.is_almost_colinear(basis1[0], np.array([0.,0.,2.])) )
     basis2=ftuv.create_orthonormal_basis(np.array([0.0,0.0,2.0]), np.array([0.0, 3.6, 0.]))    
     self.assertTrue( ftuv.is_almost_colinear(basis2[0], np.array([0.,0.,2.])) )
     self.assertTrue( ftuv.is_almost_colinear(basis2[1], np.array([0.,3.6,0])) )
     basis3=ftuv.create_orthonormal_basis(np.array([0.0,0.0,2.0]), np.array([0.0, 3.6, 0.]), np.array([1,0,0]))    
     self.assertTrue( ftuv.is_almost_colinear(basis3[0], np.array([0.,0.,2.])) )
     self.assertTrue( ftuv.is_almost_colinear(basis3[1], np.array([0.,3.6,0])) )
     self.assertTrue( ftuv.is_almost_colinear(basis3[2], np.array([1.,0,0])) )
     for basis in [basis1, basis2, basis3]:
       self.assertAlmostEqual(np.dot(basis[0],basis[1]),0)
       self.assertAlmostEqual(np.dot(basis[0],basis[2]),0)
       self.assertAlmostEqual(np.dot(basis[2],basis[1]),0)
       for b in basis:
           self.assertAlmostEqual(ftuv.magnitude(b),1)
示例#44
0
def get_loop_flexibility(cg, loop):
    """
    Unused. We tried to see if the length of the loop vs # bases had an effect on ointeraction probability.
    """
    assert loop[0] == "i"
    d = cg.define_a(loop)
    nt1, nt2 = d[1] - d[0], d[3] - d[2]
    max_nts = max(nt1, nt2)
    loop_length = ftuv.magnitude(cg.coords.get_direction(loop))
    # As number of nucleotide-links (or phosphate groups) per Angstrom
    # 9.2 is the sum of average bond lengths for bonds in the nucleotide linkage.
    # Bond lengths taken from: DOI: 10.1021/ja9528846
    # A value of 1 means, all bonds are stretched.
    # Ideal helices have a value of: 4.41
    # A value below 1 should be rare.
    # Higher values mean higher flexibility.
    return (max_nts) / loop_length * 9.2
示例#45
0
def get_loop_flexibility(cg, loop):
    """
    Unused. We tried to see if the length of the loop vs # bases had an effect on ointeraction probability.
    """
    assert loop[0] == "i"
    d = cg.define_a(loop)
    nt1, nt2 = d[1] - d[0], d[3] - d[2]
    max_nts = max(nt1, nt2)
    loop_length = ftuv.magnitude(cg.coords.get_direction(loop))
    # As number of nucleotide-links (or phosphate groups) per Angstrom
    # 9.2 is the sum of average bond lengths for bonds in the nucleotide linkage.
    # Bond lengths taken from: DOI: 10.1021/ja9528846
    # A value of 1 means, all bonds are stretched.
    # Ideal helices have a value of: 4.41
    # A value below 1 should be rare.
    # Higher values mean higher flexibility.
    return (max_nts) / loop_length * 9.2
示例#46
0
    def get_stem_stats(self, stem):                                                                                   
        '''
        Calculate the statistics for a stem and return them. These statistics will describe the                       
        length of the stem as well as how much it twists.                                                             

        @param stem: The name of the stem.                                                                            

        @return: A StemStat structure containing the above information.                                               
        '''                                                                                                           
        ss = ftms.StemStat()
        ss.pdb_name = self.name
        #ss.bp_length = abs(self.defines[stem][0] - self.defines[stem][1])                                            
        ss.bp_length = self.stem_length(stem)
        ss.phys_length = ftuv.magnitude(self.coords[stem][0] - self.coords[stem][1])
        ss.twist_angle = ftug.get_twist_angle(self.coords[stem], self.twists[stem])
        ss.define = self.defines[stem]

        return ss  
示例#47
0
def _find_annot_pos_on_circle(nt, coords, cg):
    for i in range(5):
        for sign in [-1,1]:
            a = np.pi/4*i*sign
            if cg.get_elem(nt)[0]=="s":
                bp = cg.pairing_partner(nt)
                anchor = coords[bp-1]
            else:
                anchor =np.mean([ coords[nt-2], coords[nt]], axis=0)
            vec = coords[nt-1]-anchor
            vec=vec/ftuv.magnitude(vec)
            rotated_vec =  np.array([vec[0]*math.cos(a)-vec[1]*math.sin(a),
                                     vec[0]*math.sin(a)+vec[1]*math.cos(a)])
            annot_pos = coords[nt-1]+rotated_vec*18
            if _clashfree_annot_pos(annot_pos, coords):
                log.debug("Annot pos on c is %s",annot_pos)
                return annot_pos
    return None
示例#48
0
def align_rnas(rnas):
    crds0 = rnas[0].get_ordered_virtual_residue_poss()
    centroid0 = ftuv.get_vector_centroid(crds0)
    print(centroid0)
    rnas[0].rotate_translate(centroid0, ftuv.identity_matrix)
    crds0-=centroid0
    assert  ftuv.magnitude(ftuv.get_vector_centroid(crds0))<10**-5, ftuv.magnitude(ftuv.get_vector_centroid(crds0))
    assert  ftuv.magnitude(ftuv.get_vector_centroid(rnas[0].get_ordered_virtual_residue_poss()))<10**-5, ftuv.get_vector_centroid(rnas[0].get_ordered_virtual_residue_poss())
    for rna in rnas[1:]:
        crds1 = rna.get_ordered_virtual_residue_poss()
        centroid1 = ftuv.get_vector_centroid(crds1)
        crds1-=centroid1
        rot_mat = ftms.optimal_superposition(crds0, crds1)
        rna.rotate_translate(centroid1, rot_mat)
        assert  ftuv.magnitude(ftuv.get_vector_centroid(crds1))<10**-5, ftuv.magnitude(ftuv.get_vector_centroid(crds1))
        assert  ftuv.magnitude(ftuv.get_vector_centroid(rna.get_ordered_virtual_residue_poss()))<10**-5, ftuv.magnitude(ftuv.get_vector_centroid(rna.get_ordered_virtual_residue_poss()))
示例#49
0
    def deviation_from(self, stat2):
        """
        How much does the other stat differ from this stat?

        :param stat2: Another AngleStat
        :returns: A 4-tuple: The positional deviation in Angstrom, and 3 absolute angular deviations in radians.
                  The  angular deviations are u, v and t
        """
        ret = []
        pos1 = ftuv.spherical_polar_to_cartesian(self.position_params())
        pos2 = ftuv.spherical_polar_to_cartesian(stat2.position_params())
        ret.append(ftuv.magnitude(pos1 - pos2))
        log.debug("Position difference is %f", ret[-1])

        for attr in ["u", "v", "t"]:
            raw_diff = getattr(self, attr) - getattr(stat2, attr)
            # Map the difference to a value between 0 and pi
            raw_diff_on_circle = abs(
                (raw_diff + math.pi / 2) % (math.pi) - math.pi / 2)
            log.debug("Angular difference for %s is %f, mapped to %f",
                      attr, raw_diff, raw_diff_on_circle)
            ret.append(raw_diff_on_circle)
        return tuple(ret)
示例#50
0
    def deviation_from(self, stat2):
        """
        How much does the other stat differ from this stat?

        :param stat2: Another AngleStat
        :returns: A 4-tuple: The positional deviation in Angstrom, and 3 absolute angular deviations in radians.
                  The  angular deviations are u, v and t
        """
        ret = []
        pos1 = ftuv.spherical_polar_to_cartesian(self.position_params())
        pos2 = ftuv.spherical_polar_to_cartesian(stat2.position_params())
        ret.append(ftuv.magnitude(pos1 - pos2))
        log.debug("Position difference is %f", ret[-1])

        for attr in ["u", "v", "t"]:
            raw_diff = getattr(self, attr) - getattr(stat2, attr)
            #Map the difference to a value between 0 and pi
            raw_diff_on_circle = abs((raw_diff + math.pi / 2) % (math.pi) -
                                     math.pi / 2)
            log.debug("Angular difference for %s is %f, mapped to %f", attr,
                      raw_diff, raw_diff_on_circle)
            ret.append(raw_diff_on_circle)
        return tuple(ret)
示例#51
0
 def test_create_orthonormal_basis(self):
     basis1 = ftuv.create_orthonormal_basis(np.array([0.0, 0.0, 2.0]))
     self.assertTrue(ftuv.is_almost_parallel(
         basis1[0], np.array([0., 0., 2.])))
     basis2 = ftuv.create_orthonormal_basis(
         np.array([0.0, 0.0, 2.0]), np.array([0.0, 3.6, 0.]))
     self.assertTrue(ftuv.is_almost_parallel(
         basis2[0], np.array([0., 0., 2.])))
     self.assertTrue(ftuv.is_almost_parallel(
         basis2[1], np.array([0., 3.6, 0])))
     basis3 = ftuv.create_orthonormal_basis(
         np.array([0.0, 0.0, 2.0]), np.array([0.0, 3.6, 0.]), np.array([1., 0, 0]))
     self.assertTrue(ftuv.is_almost_parallel(
         basis3[0], np.array([0., 0., 2.])))
     self.assertTrue(ftuv.is_almost_parallel(
         basis3[1], np.array([0., 3.6, 0])))
     self.assertTrue(ftuv.is_almost_parallel(
         basis3[2], np.array([1., 0, 0])))
     for basis in [basis1, basis2, basis3]:
         self.assertAlmostEqual(np.dot(basis[0], basis[1]), 0)
         self.assertAlmostEqual(np.dot(basis[0], basis[2]), 0)
         self.assertAlmostEqual(np.dot(basis[2], basis[1]), 0)
         for b in basis:
             self.assertAlmostEqual(ftuv.magnitude(b), 1)
示例#52
0
def output_long_range_distances(bg):
    for key1 in bg.longrange.keys():
        for key2 in bg.longrange[key1]:
            if bg.has_connection(key1, key2):
                continue

            #point1 = bg.get_point(key1)
            #point2 = bg.get_point(key2)

            (i1,i2) = cuv.line_segment_distance(bg.coords[key1][0], bg.coords[key1][1],
                                             bg.coords[key2][0], bg.coords[key2][1])

            vec1 = bg.coords[key1][1] - bg.coords[key2][0]
            basis = cuv.create_orthonormal_basis(vec1)
            coords2 = cuv.change_basis(i2 - i1, basis, cuv.standard_basis)
            (r, u, v) = cuv.spherical_polar_to_cartesian(coords2)

            
            seq1 = 'x'
            seq2 = 'x'

            '''
            if key1[0] != 's' and key[0] != 'i':
                seq1 = bg.get_seq(key1)
            if key2[0] != 's' and key2[0] != 'i':
                seq2 = bg.get_seq(key2)
            '''

            print "%s %s %d %s %s %d %f %s %s %s %f" % (key1, 
                                         key1[0], 
                                         bg.get_length(key1),
                                         key2, 
                                         key2[0],
                                         bg.get_length(key2),
                                         cuv.magnitude(i2-i1),
                                         seq1, seq2, "Y", v)
示例#53
0
def cylinderToThree(line, name):
    start, end=line
    length=ftuv.magnitude(end-start)
    look_at=end
    center=(start+end)/2
    return {"center":center.tolist(), "look_at":look_at.tolist(), "length":length, "type":name[0], "name":name}
示例#54
0
def get_relative_orientation(cg, loop, stem):
    '''
    Return how loop is related to stem in terms of three parameters.

    The stem is the receptor of a potential A-Minor interaction, whereas the
    loop is the donor.

    The 3 parameters are:

        1.  Distance between the closest points of the two elements
        2.  The angle between the stem and the vector between the two
        3.  The angle between the minor groove of l2 and the projection of
            the vector between stem and loop onto the plane normal to the stem
            direction.
    '''
    point_on_stem, point_on_loop = ftuv.line_segment_distance(
        cg.coords[stem][0], cg.coords[stem][1], cg.coords[loop][0],
        cg.coords[loop][1])
    conn_vec = point_on_loop - point_on_stem
    dist = ftuv.magnitude(conn_vec)
    angle1 = ftuv.vec_angle(cg.coords.get_direction(stem), conn_vec)
    # The direction of the stem vector is irrelevant, so
    # choose the smaller of the two angles between two lines
    if angle1 > np.pi / 2:
        angle1 = np.pi - angle1
    tw = cg.get_twists(stem)
    if dist == 0:
        angle2 = float("nan")
    else:
        if stem[0] != 's':
            raise ValueError(
                "The receptor needs to be a stem, not {}".format(stem))
        else:
            stem_len = cg.stem_length(stem)
            # Where along the helix our A-residue points to the minor groove.
            # This can be between residues. We express it as floating point nucleotide coordinates.
            # So 0.0 means at the first basepair, while 1.5 means between the second and the third basepair.
            pos = ftuv.magnitude(
                point_on_stem - cg.coords[stem][0]) / ftuv.magnitude(
                    cg.coords.get_direction(stem)) * (stem_len - 1)
            # The vector pointing to the minor groove, even if we are not at a virtual residue (pos is a float value)
            virt_twist = ftug.virtual_res_3d_pos_core(cg.coords[stem],
                                                      cg.twists[stem], pos,
                                                      stem_len)[1]
            # The projection of the connection vector onto the plane normal to the stem
            conn_proj = ftuv.vector_rejection(conn_vec,
                                              cg.coords.get_direction(stem))
            try:
                # Note: here the directions of both vectors are well defined,
                # so angles >90 degrees make sense.
                angle2 = ftuv.vec_angle(virt_twist, conn_proj)
            except ValueError:
                if np.all(virt_twist == 0):
                    angle2 = float("nan")
                else:
                    raise
            # Furthermore, the direction of the second angle is meaningful.
            # We call use a positive angle, if the cross-product of the two vectors
            # has the same sign as the stem vector and a negative angle otherwise
            cr = np.cross(virt_twist, conn_proj)
            sign = ftuv.is_almost_parallel(cr, cg.coords.get_direction(stem))
            #assert sign != 0, "{} vs {} not (anti) parallel".format(
            #    cr, cg.coords.get_direction(stem))
            angle2 *= sign

    return dist, angle1, angle2
def main():
    usage = """
    ./helix_orienation_divergences.py

    Analyze how much the helix-helix orientations diverge between two data sets.
    """
    num_args=0
    parser = OptionParser()

    parser.add_option('-r', '--resolution', dest='resolution', default=10, help="The resolution of the resulting plot", type='int')
    parser.add_option('-a', '--angle', dest='angle', default=0, help="The angle of the camera", type='float')
    parser.add_option('-f', '--fig-name', dest='fig_name', default='', help="The name of the file to save the figure to. If it is not specified, the figure will not be saved", type='str')
    parser.add_option('-i', '--interior_loops', dest='interior_loops', default=False, help='Cluster only the interior loops', action='store_true')
    parser.add_option('-m', '--multi_loops', dest='multi_loops', default=False, help='Cluster only the interior loops', action='store_true')

    #parser.add_option('-u', '--useless', dest='uselesss', default=False, action='store_true', help='Another useless option')

    (options, args) = parser.parse_args()

    if len(args) < num_args:
        parser.print_help()
        sys.exit(1)

    column_names = ['type', 'pdb', 's1', 's2', 'u', 'v', 't', 'r', 'u1', 'v1', 'atype', 'something1', 'something2', 'sth3', 'sth4']


    real_stats = ftms.ConformationStats('fess/stats/real.stats').angle_stats
    sampled_stats = ftms.ConformationStats('fess/stats/temp.stats').angle_stats

    # count how many statistics we have for each statistic type
    stat_counts = c.defaultdict(int)
    for sc in real_stats.keys():
        stat_counts[sc] += len(real_stats[sc])

    histograms = dict()
    for b in stat_counts.keys():
        if b[2] != 2.:
            # only look at type 2 angles
            continue

        if options.interior_loops:
            if b[0] == 1000 or b[1] == 1000:
                continue
        if options.multi_loops:
            if b[0] != 1000 and b[1] != 1000:
                continue

        (selected_sizes, count) = get_nearest_dimension_sizes(b, stat_counts, 1)

        if count < 3:
            continue

        fud.pv('b, selected_sizes')

        combined_real = []

        # get the statistics that correspond to the selected sampled sizes
        for ss in selected_sizes:
            #ss_r = get_certain_angle_stats(real_stats, ss)
            ss_r = real_stats[ss]

            combined_real += list(ss_r[['u','v']].as_matrix())

        num_points = len(combined_real)
        combined_real = np.array(combined_real)
        #histograms[b] = (np.histogram2d(combined_real[:,0], combined_real[:,1], range=[[0, m.pi], [-m.pi, m.pi]])[0] + 0.5) / float(num_points)
        histograms[b] = combined_real

    dists = []
    named_dists = dict()
    pp_dists = dict()
    for k1, k2 in it.combinations(histograms.keys(), 2):
        per_point_distances = []
        for p1 in histograms[k1]:
            point_distances = []
            for p2 in histograms[k2]:
                point_distances += [ftuv.magnitude(p1 - p2)]
            per_point_distances += [min(point_distances)]

        for p2 in histograms[k2]:
            point_distances = []
            for p1 in histograms[k1]:
                point_distances += [ftuv.magnitude(p1-p2)]
            per_point_distances += [min(point_distances)]

        dists += [max(per_point_distances)]
        named_dists[(k1,k2)] = max(per_point_distances)
        pp_dists[(k1,k2)] = per_point_distances

        '''
        kl = histograms[k1] * (histograms[k1] / histograms[k2])
        kl = sum(map(sum, kl))
        dists += [kl]
        '''

    fud.pv('dists')
    Z = sch.complete(dists)
    fud.pv('Z')
    sch.dendrogram(Z, labels = histograms.keys(), leaf_rotation=90)
    plt.subplots_adjust(bottom=0.25)
    
    plt.show()

    k1 = (6,7,2)
    k2 = (5,6,2)

    rs = get_certain_angle_stats(real_stats, k1)
    ss = get_certain_angle_stats(real_stats, k2)

    fud.pv('named_dists[(k1,k2)]')
    fud.pv('pp_dists[(k1,k2)]')

    real_us = rs[['u', 'v']].as_matrix()
    sampled_us = ss[['u','v']].as_matrix()

    U_r = real_us[:,0]
    V_r = real_us[:,1]

    U_s = sampled_us[:,0]
    V_s = sampled_us[:,1]

    total_r = len(U_r)
    total_s = len(U_s)

    hr = np.histogram2d(U_r, V_r)
    hs = np.histogram2d(U_s, V_s)

    pseudo_r = (hr[0] + 1) / total_r
    pseudo_s = (hs[0] + 1) / total_r
    kl = pseudo_r * (pseudo_r / pseudo_s)
    fud.pv('kl')
    fud.pv('sum(map(sum, kl))')

    X_r = np.sin(U_r) * np.cos(V_r)
    Y_r = np.sin(U_r) * np.sin(V_r)
    Z_r = np.cos(U_r)

    r = 1.
    X_s = r * np.sin(U_s) * np.cos(V_s)
    Y_s = r * np.sin(U_s) * np.sin(V_s)
    Z_s = r * np.cos(U_s)

    fud.pv('real_us')

    real_us_orig = np.copy(real_us)
    sampled_us_orig = np.copy(sampled_us)

    print len(real_us), len(sampled_us)

    fig = plt.figure(figsize=(10,10))
    ax = Axes3D(fig)

    a = Arrow3D([-1.3,1.3],[0,0],[0,0], mutation_scale=20, lw=5, arrowstyle="-|>", color="g")
    ax.add_artist(a)

    ax.plot(X_r, Y_r, Z_r, 'bo', alpha=0.3)
    ax.plot(X_s, Y_s, Z_s, 'ro', alpha=0.3)

    u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
    x=np.cos(u)*np.sin(v)
    y=np.sin(u)*np.sin(v)
    z=np.cos(v)
    ax.plot_wireframe(x, y, z, color="y")

    #surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=colors,
    #       linewidth=0, antialiased=False)

    ax._axis3don=False
    ax.set_zlim3d(-1, 1)
    ax.w_zaxis.set_major_locator(LinearLocator(6))
    ax.view_init(0, options.angle)

    '''
    plt.subplots_adjust(left=0.4, right=0.9, top=0.9, bottom=0.1)

    for i in xrange(0, 360, 40):
        savefig("fig%d.png", (i))
    '''

    '''
    sm = cm.ScalarMappable(cmap=cm.jet)
    sm.set_array(W)
    fig.colorbar(sm)
    '''

    if options.fig_name != "":
        plt.savefig(options.fig_name, bbox_inches='tight')
    else:
        plt.show()