def predict(): form = PredictForm() if form.submit(): # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + "eyJraWQiOiIyMDIwMTEyMTE4MzQiLCJhbGciOiJSUzI1NiJ9.eyJpYW1faWQiOiJJQk1pZC01NTAwMDhSV0FOIiwiaWQiOiJJQk1pZC01NTAwMDhSV0FOIiwicmVhbG1pZCI6IklCTWlkIiwianRpIjoiZWZjNjRiZGEtNjg5NS00NDM0LWFjMGUtMzcwMTU0MDE5YzIzIiwiaWRlbnRpZmllciI6IjU1MDAwOFJXQU4iLCJnaXZlbl9uYW1lIjoiUml0dSIsImZhbWlseV9uYW1lIjoicmFqIiwibmFtZSI6IlJpdHUgcmFqIiwiZW1haWwiOiI0bmkxOGlzMDcxX2JAbmllLmFjLmluIiwic3ViIjoiNG5pMThpczA3MV9iQG5pZS5hYy5pbiIsImFjY291bnQiOnsidmFsaWQiOnRydWUsImJzcyI6IjkzZWI1YzY4NDc4YjQ5N2NhZGZmZTg5NzE2ZDBlM2Y3IiwiZnJvemVuIjp0cnVlfSwiaWF0IjoxNjA3ODY5MTUwLCJleHAiOjE2MDc4NzI3NTAsImlzcyI6Imh0dHBzOi8vaWFtLmJsdWVtaXgubmV0L2lkZW50aXR5IiwiZ3JhbnRfdHlwZSI6InVybjppYm06cGFyYW1zOm9hdXRoOmdyYW50LXR5cGU6YXBpa2V5Iiwic2NvcGUiOiJpYm0gb3BlbmlkIiwiY2xpZW50X2lkIjoiZGVmYXVsdCIsImFjciI6MSwiYW1yIjpbInB3ZCJdfQ.bHf38EPnx79HiUky8kx48ZT3n47twChQBZ7EtMNiV6IYq26vZf9boRhl7cH2un1ec_bTn9mlTVbeR5Z9D5GejpbK6cV-bbQvAxyhQeO_8QxOakTbVjrb7XB0fJq6H0cTw3g4VgN2iPM0GmSkmUqG4nHcttkA6GIX38qTRi0vwv5Y4fq-uiQPqQEnPsm8hZ-x-slNSifNhJa9qQ4aimzkTLofihI1ou9ZugAwAr_tibZ-2pKE2q3d1MAMwomN1sUgP9SfXnZAEWcDA9tekGLdvWy828lcKcVJwXdI2jyMdq-dfVc7p6IATWYfldH7fbIhoCdzwnfpQn7hkJCSIsiNhQ", "refresh_token": "OKCABPadvvxWIgVb69e4uIyhyx_AnKa_gOJtx-rgeAM0m8_S1pFFoHUbvVkcBHeV9YSNK-o26jCgEPw0-Qn2aIkjZGy2jhmzOzhAXoX5KI-X_yT7c_RT-hyvsy_3oxbczx8Az0kB1y656PfhIThiOtkSw9pNvDfUFUwDwH3hsmmvHO_89LC23SCVBdto183t1Mf8kw3tyaJJvaLFs74UZ8opbeeYJ0Pnng96f_fiXdfMgemT30uZD2zFexNAsQ3SS4EyoXPhm5ZwnuuejWeHZt6d5lAAdX1Zly5FFhV4vC26aFZBOJOjyUTAQph5WbMFS4j8jyRZIbbfnM_rPSW6D6QhNr_MifPxx3wtFGQhD2tpIq220dfR_u0jWya7Ad6peNWJ8T4fzpkP9TK9XXe7CPAeRnhW_8-wq-HO3DjX20HT3Tj7xAfvw9QYyyPFb2Q56C5zg6XqHtsbAA5F9J8tCRbPcU_yjLyQzi_s_L8_Yiah5K49oWwD3M17EYNLKifQ0SKMAAGVczw9ApAqh0QBubEaMKES1559Sy5meqSslyiOAxIaAkcDB7UgrbcKiflHgdOfNXr3bGMXbDOEuOdGkGn98PQ3OSvSwxPKOA9bpZegYeoQtAWCC5mcpx7zL_Aux6mmIVhAS6q-TV0bwk7n4qUm9QTgZbnm92fkuBKvK9Kww04QC43WiqJ_1fXIAou4le9gpiZMaqXUxnZNFz7YEM1QQSxqGozA-majfeSqGRUMpk1oBLteWwn-1hDbptAxaEUZQfC__Fn6CHL-oq0t6zxEzDtvxW3knZNq38LFUevxkHAptyiAjHIo6BjGX_68-hFUeoPVXPO3SJaZkHuAPBQJ-7T0bN1eCFonkLKdxVWhdCRMrgFJULaNJ-ErVO0o4mhlnlxCaHbbpbyizsFbMai0canDQ1sykPoTlAuhKd2QYAG5MonfRPsBEMxOMIt_otgKQ5uljRZWCgjYCFdogyQ-oaEyHYCVaAvYgjhCkVYihzs6Qnv1BQ8y-pWV9j6gcBYybxm3X57x6k2Jtk0hZdbjbBko3fOE8PTnqZ4lDLTFsPUdDqkPsjS3P_W7ZpT0XEcqByZmda1pxoqdm3yt3-nfmxHVUt_fQV1lmqmnLv8Ssw" } python_object = [ int(form.Pregnancies.data), int(form.Glucose.data), int(form.BloodPressure.data), int(form.SkinThickness.data), int(form.Insulin.data), float(form.BMI.data), float(form.DiabetesPedigreeFunction.data), int(form.Age.data) ] #Transform python objects to Json #print(python_object) userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = { "input_data": [{ "fields": [ "Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age" ], "values": userInput }] } #print(payload_scoring) response_scoring = requests.post( "https://us-south.ml.cloud.ibm.com/ml/v4/deployments/167da3fa-d770-4b95-b318-46e6b9846d5c/predictions?version=2020-12-13", json=payload_scoring, headers=header) #print(response_scoring.text) output = json.loads(response_scoring.text) #print(output) for key in output: ab = output[key] for key in ab[0]: bc = ab[0][key] #print(bc) form.abc = bc[0][0] # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + " TODO: ADD YOUR IAM ACCESS TOKEN FROM IBM CLOUD HERE", 'ML-Instance-ID': " TODO: ADD YOUR ML INSTANCE ID HERE " } if (form.bmi.data == None): python_object = [] else: python_object = [ form.age.data, form.sex.data, float(form.bmi.data), form.children.data, form.smoker.data, form.region.data ] #Transform python objects to Json userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = { "input_data": [{ "fields": ["age", "sex", "bmi", "children", "smoker", "region"], "values": userInput }] } response_scoring = requests.post( "https://us-south.ml.cloud.ibm.com/v4/deployments/ADD-DEPLOYMENT-ID-HERE/predictions", json=payload_scoring, headers=header) output = json.loads(response_scoring.text) for key in output: ab = output[key] for key in ab[0]: bc = ab[0][key] roundedCharge = round(bc[0][0], 2) form.abc = roundedCharge # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + "eyJraWQiOiIyMDIwMDcyNDE4MzEiLCJhbGciOiJSUzI1NiJ9.eyJpYW1faWQiOiJpYW0tU2VydmljZUlkLTlmMTFhNzNkLWI1N2QtNGFhNy1iZTE0LTI3NzY4ZWVmODUzYyIsImlkIjoiaWFtLVNlcnZpY2VJZC05ZjExYTczZC1iNTdkLTRhYTctYmUxNC0yNzc2OGVlZjg1M2MiLCJyZWFsbWlkIjoiaWFtIiwiaWRlbnRpZmllciI6IlNlcnZpY2VJZC05ZjExYTczZC1iNTdkLTRhYTctYmUxNC0yNzc2OGVlZjg1M2MiLCJuYW1lIjoid2RwLXdyaXRlciIsInN1YiI6IlNlcnZpY2VJZC05ZjExYTczZC1iNTdkLTRhYTctYmUxNC0yNzc2OGVlZjg1M2MiLCJzdWJfdHlwZSI6IlNlcnZpY2VJZCIsImFjY291bnQiOnsidmFsaWQiOnRydWUsImJzcyI6ImU4NmQ3YzU5OTA5MTkwYzg4ZGIzZDZjNjBhYWY1NTRkIiwiZnJvemVuIjp0cnVlfSwiaWF0IjoxNTk2MjA0NDczLCJleHAiOjE1OTYyMDgwNzMsImlzcyI6Imh0dHBzOi8vaWFtLmJsdWVtaXgubmV0L2lkZW50aXR5IiwiZ3JhbnRfdHlwZSI6InVybjppYm06cGFyYW1zOm9hdXRoOmdyYW50LXR5cGU6YXBpa2V5Iiwic2NvcGUiOiJpYm0gb3BlbmlkIiwiY2xpZW50X2lkIjoiZGVmYXVsdCIsImFjciI6MSwiYW1yIjpbInB3ZCJdfQ.Jza_BjwI9OstNsFj8G8fD3IfW3X_1_zAP1pwcUfKp-DsYxj9d07d4b2flIiM_wFjDS2ylxn7SI7nTBRGC9Fe2jMBqMUWQDkhsqA1gMJNuTzmGc-3Ik9KLLvHK56OwJjiy4UTMUL2L9tMWYufYRP0KVDLJ2qjeoGovWizqOOY5AbaMEKpnhrMIyLimPjnh5wwAtBc20BEjss5cj4WrbHmoLz4W63-jC3fHQgrLoVOm14EcS8154bkXEtHb-YbvIENOdf61PbOG5AObxkB6UxNAOGnHEuCGnb2J0l-ZUw2hCK7RIOtSxKXjKPBXdkdhHlmCd5Fg8ArtPjsshH4HKC70g", "refresh_token": "OKCr2IM6fK31Y5sjsLvW9tppLqlh5y4_bk1Ms-I46fJRni_uOPbQf8cblyHo40f6Y7KV4fdnkyX9cTjSSS1wi5iaK4VpxwDKEGBsl0nY8fwAw3kUtX45_ij6Me-8mxKbu9b-HGh3BQdcqmFEHwtFb4o0cO8N6LpMqxujm9xstZSs24iXpgh1JbFwKAqObeEckLuZJe7DQtZSqP3LnhU2As3KtsbPZR-bU0XrK-VVdzXZBG1hraUmtvCCMOKumvHGia-cz3nJtllIS_gsw2mrep7eLrTDY0Vnxgt0aQkfGlXZGeYe7qXiOl8eiE4Ets8--vTQFnLOQp5KJql8KXO-DcVLVviX4WHQoA0XVAlfaQrVAnGa3ngXTGXXPlixhh78WzomoyzRKXX4dWfkw5z7kaIgKacwlKEEFmzNNXqKFbMXYKqGePi-K7ntHuTnoi_D_FDmFLhMRVWh3Xo-QfWFhZUiAQP0HSbK0AMrWAQXS_H9h5PCFLzozX8ezF8fAAzf0GjDU30CWK0KdA7yYA8uP5bFlavDYI4OUksyEFxqEMRIbQIxjQg8PeJJJ666pLAyFcR--po4pe4XwLgrXe2KdzQ2ephj1DkaximHN0z_YFSKQPMiotaEUaZVkgR-i2Q_yC3ANETTQIhzQ7E9-aQ4Tvng36Qs7u8H7vT_42aEo7rIHzhooLvVaUmESCFtYdNeGmk4g1LY5SmYbNe-dHQ1UEJrXPAfiXbvFMc0GWfdO_-VBPbmQgVLtLM6i5ywwdzfxu0d2y-OLFqrfB-n5jdN4S8VZdjAxDu8VR46MJRahBWIwswa7T2Q0zB9OjL1q5q7ddrXabQTFu3Jxazrapj7XsBt3uHQ6a6nF8LIb5gBktDNEsFs6XIk-e9TIzwJImsErsa9b95kKWunQr3Tom5idhsUkRMScxZUNllUGopOtfTyAR_kNkBykKsDMtKoBTY6BTEy_TIuOZLFWOGEWDSojwms_ctvwfBzAUD0mT2W20gw53sqNsozpJpbFqplYSP5at6R3I3EQ3s9M96Iu_2Y6PV8uszXd0eucxvgY27orq6fdP6MMEqShf3ScFgVQNEGiSc", 'ML-Instance-ID': "61862e37-c7bc-4fae-9d6e-5dc33e3d5700" } if (form.ID_Txn.data == None): python_object = [] else: #float(form.bmi.data) python_object = [ int(form.ID_Txn.data), form.Hora_Txn.data, form.Sexo.data, form.Edo_Civil.data, form.Hijos.data, form.Monto_Txn.data, form.Establecimiento.data, form.Tipo_Compra.data, form.Metodo_Pago.data, form.Edad.data ] #Transform python objects to Json userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = { "input_data": [{ "fields": [ "ID_Txn", "Hora_Txn", "Sexo", "Edo_Civil", "Hijos", "Monto_Txn", "Establecimiento", "Tipo_Compra", "Metodo_Pago", "Edad" ], "values": userInput }] } response_scoring = requests.post( "https://us-south.ml.cloud.ibm.com/v4/deployments/4c8b8b97-954b-4238-b09c-1d9276f8a39d/predictions", json=payload_scoring, headers=header) output = json.loads(response_scoring.text) print(output) form.abc = output # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + "eyJraWQiOiIyMDIwMTEyMTE4MzQiLCJhbGciOiJSUzI1NiJ9.eyJpYW1faWQiOiJJQk1pZC01NTAwMDhSV0FOIiwiaWQiOiJJQk1pZC01NTAwMDhSV0FOIiwicmVhbG1pZCI6IklCTWlkIiwianRpIjoiY2EyZmY5M2UtYTBkNi00Zjg0LTljZDgtYjcyZTJjYWE2ODIzIiwiaWRlbnRpZmllciI6IjU1MDAwOFJXQU4iLCJnaXZlbl9uYW1lIjoiUml0dSIsImZhbWlseV9uYW1lIjoicmFqIiwibmFtZSI6IlJpdHUgcmFqIiwiZW1haWwiOiI0bmkxOGlzMDcxX2JAbmllLmFjLmluIiwic3ViIjoiNG5pMThpczA3MV9iQG5pZS5hYy5pbiIsImFjY291bnQiOnsidmFsaWQiOnRydWUsImJzcyI6IjkzZWI1YzY4NDc4YjQ5N2NhZGZmZTg5NzE2ZDBlM2Y3IiwiZnJvemVuIjp0cnVlfSwiaWF0IjoxNjA3NzEyNDI4LCJleHAiOjE2MDc3MTYwMjgsImlzcyI6Imh0dHBzOi8vaWFtLmJsdWVtaXgubmV0L2lkZW50aXR5IiwiZ3JhbnRfdHlwZSI6InVybjppYm06cGFyYW1zOm9hdXRoOmdyYW50LXR5cGU6YXBpa2V5Iiwic2NvcGUiOiJpYm0gb3BlbmlkIiwiY2xpZW50X2lkIjoiZGVmYXVsdCIsImFjciI6MSwiYW1yIjpbInB3ZCJdfQ.RPq2kN7AlZS6Pax_rbM2NDLRnI8DAKirOjb0U4AIZNJhN6TLi447EBqAdXd0bcAlaMYPgNZF-jHMbyLepTh0Xw_rgmpTYBDMyp7sIgDcY3thtgqC3bN_KbdrYiMa2ZnZtgmZNMED5ty71upWBZQ0FQ-_RWm7UAnuuw3QkHzm8MIKIVGU8k-oS3FXPfvZG2ktYA1d0TWIHa61t40dHTtA3re4P-YlzZFNDECiMqPcj1r6HRxaWpGjDo_aJCYuatTuhoPChT7jZ7H5VDTEfxtET3lqg3vjz1q_AsHXQnj35cjRAHadeAjgT146InWu0dTOB4f4ROSpD5kCuwQl55OPwg", "refresh_token": "OKBh1FV_0Z4EBaqzLLt-GqmWA-mF4pfpw6kbfS_FIhMAszPIpj_jmsnlXaT8Qj47Y0EdG_9eTrrxa-MP6B6Jvt09_wRRRX9ZSNfo-VMHo69PhfioMfBe9TDQXe7xBaBjYSjxBRfROf0WTXZVcZ5RrIw77oFHEPbFQDH6Q1iSLNBleOcTphFBIcNpG1JjTB-nopPxtAbzH4ZgTuSPflbOVYKzlTUSJELL_u1uO6wi8kgBLjNvxgby25kqtKd3wmhZbcX8HcKiA98shzMyg6ISpS41vJMrgfN11h6t-gfoEc0sq4CPqJI69W2-LoVY9CpqfG7_DmzEpyRO_DKKQx82PcvTYrEumYDbRVT1cVrZGeZgg4LGJ8e6gFldwFiiB8ZNvClJ69Rf2e5o5QQ8gpZbtY3ffthswydTsEBQ1vRF8T8AcC29LMSWNJALg5MJViomTcVqcNgTITHhWB4efpq0WJ3gSlOdDCJM_i2aITCdl4rTq3PiCa4bl6xQymCzBvsBI9DIg3Nv6G_t-Z005JofKz-pG8DRdoagotIt7uerClwbNKjqfCTE3kScwyhnFx-hFOIdjoa5Cwsmwy8A6DYR0rdMNVLU4M2DI8N7_8YJAViKvP0WJYaMr0mUPdNF-qJ2ffP4eazknnG7yilmjEq3tOZgXrpAY1k1ZdHpg0xh-1S_uyIkpG9Wr26He3u_FwNNnVki9tvPElFuDtsSXqOyoAPHB0s88jatAd_kf03fBYNW3QdNxDEr6W5-iXWW8UDdsjDGZpMYPi0OIrevnCgTpwg5QYq13l4608w85Cx14Lhm3mupzvN_pHroLIzfDW7iQWQVMq17WTBYndbLKIEea7mre1J_7xpR-W0i1yqKZwH_5vsSnlva77KXlIeW_XBVoYCHyCQeKfAOR4YUQtMINB54ZBqwyKtvBx_R68U5yqwoTf7lsXZqCPSJ34OqSHFHaTDRPEPNa3FAo8PDeEgGPdRsDuN3Q0gXgqZKs3NTF4V-odcM2jr2fzdiYq9XpmMP0Pp0Kxo29OBpfnMQYo6QbY71by9tHYIp1T7bdeDYGFwQM-pulTcV7-gjWFl4tU1dw1lShfXRFqkwFbQmqTy1DG8SWisVD3S7yyHjOP3dc2xdtg" } python_object = [ float(form.Wind_Speed.data), float(form.Theoretical_Power_Curve.data), float(form.Wind_Direction.data) ] #Transform python objects to Json #print(python_object) userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = { "input_data": [{ "fields": [ "Wind Speed (m/s)", "Theoretical_Power_Curve (KWh)", "Wind Direction (°)" ], "values": userInput }] } #print(payload_scoring) response_scoring = requests.post( "https://us-south.ml.cloud.ibm.com/ml/v4/deployments/685d0d82-7b7c-4bcb-bf36-05446c46c097/predictions?version=2020-11-30", json=payload_scoring, headers=header) print(response_scoring.text) output = json.loads(response_scoring.text) #print(output) for key in output: ab = output[key] for key in ab[0]: bc = ab[0][key] form.abc = bc[0][0] # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # NOTE: you should not use your apikey in plain text consider using iam_token directly in PROD enviroments. API_KEY = "j_iFO1lfw14_IltudzUFHu-2IElu32oM1ip1pzsJTb77" token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey": API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'}) mltoken = token_response.json()["access_token"] # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + "eyJraWQiOiIyMDIxMDQyMDE4MzYiLCJhbGciOiJSUzI1NiJ9.eyJpYW1faWQiOiJJQk1pZC02NjIwMDFWM1FSIiwiaWQiOiJJQk1pZC02NjIwMDFWM1FSIiwicmVhbG1pZCI6IklCTWlkIiwianRpIjoiYThhN2UyN2QtNDllOC00OGFjLTkxNTMtZDg2NjVjZmRiZjA3IiwiaWRlbnRpZmllciI6IjY2MjAwMVYzUVIiLCJnaXZlbl9uYW1lIjoiU2FudGlhZ28iLCJmYW1pbHlfbmFtZSI6IlJpb3MiLCJuYW1lIjoiU2FudGlhZ28gUmlvcyIsImVtYWlsIjoic2FudGlhZ28ucmlvc29AdWRlYS5lZHUuY28iLCJzdWIiOiJzYW50aWFnby5yaW9zb0B1ZGVhLmVkdS5jbyIsImF1dGhuIjp7InN1YiI6InNhbnRpYWdvLnJpb3NvQHVkZWEuZWR1LmNvIiwiaWFtX2lkIjoiaWFtLTY2MjAwMVYzUVIiLCJuYW1lIjoiU2FudGlhZ28gUmlvcyIsImdpdmVuX25hbWUiOiJTYW50aWFnbyIsImZhbWlseV9uYW1lIjoiUmlvcyIsImVtYWlsIjoic2FudGlhZ28ucmlvc29AdWRlYS5lZHUuY28ifSwiYWNjb3VudCI6eyJ2YWxpZCI6dHJ1ZSwiYnNzIjoiYTQ5OGQ4N2I1YWJmNGM1Zjg0NzMzNWM2ZjA1MGY5NzMiLCJmcm96ZW4iOnRydWV9LCJpYXQiOjE2MTk5MDc3MzAsImV4cCI6MTYxOTkxMTMzMCwiaXNzIjoiaHR0cHM6Ly9pYW0uY2xvdWQuaWJtLmNvbS9vaWRjL3Rva2VuIiwiZ3JhbnRfdHlwZSI6InVybjppYm06cGFyYW1zOm9hdXRoOmdyYW50LXR5cGU6YXBpa2V5Iiwic2NvcGUiOiJpYm0gb3BlbmlkIiwiY2xpZW50X2lkIjoiZGVmYXVsdCIsImFjciI6MSwiYW1yIjpbInB3ZCJdfQ.Of3dCuqM-reK7X9CGqlss1lJ7L8sJL5TbWfLTLkHcTZ7B8f2iht7FyUx6RNIE5jTArIBlO7ni4BRyMVR4dFOeUs0-U9uPdiupPdtnCHA2XnMpaLDPE7vNNgeLyqs1AEaKm_4U7MRMTWdVwQxFCbFoK1fuu1Z-Cw5r_CErpu1ucaooNQneLa4ejYL-Vh3DpLGcCF-kQjaJFxiBZvcfr2TGbFHS4Cr68FZ4lSFgztxF7id0dEhT7kO8Vk7bfftdfFrwzYHXuTaK0Gdly_3GU4bjz6b4vnixqS9iG_fcjsrwF8BGAoAHo-8khvmHPCjV_QLgNcsNfN8ze_MrymLcFgggA"} if(form.MesVencimiento.data == None): python_object = [] else: # form.Unnamed=1 python_object = [form.Unnamed.data,form.Cliente.data, form.Pais.data,form.Moneda.data,form.Unidad.data, form.MesVencimiento.data,form.Monto.data, form.plazo.data,float(form.Prob_D.data)] #Transform python objects to Json userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = {"input_data": [{"fields": ["Unnamed: 0", "Cliente", "Pais", "Moneda", "Unidad", "MesVencimiento", "Monto", "plazo", "Prob_D"], "values": userInput }]} response_scoring = requests.post("https://us-south.ml.cloud.ibm.com/ml/v4/deployments/37264cc6-49e9-496a-bf4e-a955f07affe4/predictions?version=2021-05-01", json=payload_scoring, headers=header) output = json.loads(response_scoring.text) print(output) for key in output: ab = output[key] for key in ab[0]: bc = ab[0][key] roundedCharge = round(bc[0][0],2) if roundedCharge == 1 : respuesta="Si entrara en default" else: respuesta="Es probable que no entre en default" form.abc = respuesta # this returns the response back to the front page form.ammount=form.Prob_D.data*form.Monto.data return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + "eyJraWQiOiIyMDIwMTEyMTE4MzQiLCJhbGciOiJSUzI1NiJ9.eyJpYW1faWQiOiJJQk1pZC01NTAwMDhISlc4IiwiaWQiOiJJQk1pZC01NTAwMDhISlc4IiwicmVhbG1pZCI6IklCTWlkIiwianRpIjoiMzVmMDMwOTgtMjVlMy00ZmI3LWJlNDItODQ0MGI3MGIwMmQ5IiwiaWRlbnRpZmllciI6IjU1MDAwOEhKVzgiLCJnaXZlbl9uYW1lIjoiQWJoaW5hdiIsImZhbWlseV9uYW1lIjoiS3VtYXIiLCJuYW1lIjoiQWJoaW5hdiBLdW1hciIsImVtYWlsIjoiNG5pMThpczAwNV9iQG5pZS5hYy5pbiIsInN1YiI6IjRuaTE4aXMwMDVfYkBuaWUuYWMuaW4iLCJhY2NvdW50Ijp7InZhbGlkIjp0cnVlLCJic3MiOiJmZmE0OWE0NGZmNjg0MGJiOTc0YWYyMmI5NDlkMTgyYyIsImZyb3plbiI6dHJ1ZX0sImlhdCI6MTYwODE4NDkxOSwiZXhwIjoxNjA4MTg4NTE5LCJpc3MiOiJodHRwczovL2lhbS5ibHVlbWl4Lm5ldC9pZGVudGl0eSIsImdyYW50X3R5cGUiOiJ1cm46aWJtOnBhcmFtczpvYXV0aDpncmFudC10eXBlOmFwaWtleSIsInNjb3BlIjoiaWJtIG9wZW5pZCIsImNsaWVudF9pZCI6ImRlZmF1bHQiLCJhY3IiOjEsImFtciI6WyJwd2QiXX0.aRyTDRa4-m6jMdsStWtrOI51oVewxDAPaUDykEU6L4B75Q3eWJ5BcmKavKFKwXhySrs4XUpU1zAxTr7-l5awLMYJVoLfR2L7wC7_GlDTShEPSvoX_jUyyekMMKzAIshP_utV5LzEhJs4klzBLOfSuQTlh49PKodhGPIy8njEnLSbPu-NRwb01W-E3si2I1w3wPM_u_gUCnWPBljThaoLrLC28VqSDOFL67H2fK-lpVsKFV5j-P14g7dm2ckdxqUYFrhIgeAKdHtAuHx1njXaffo0dAZmooYaaP_6gI_Ajh1WFgegeAnfkA7kEpvYaQIQN07SEgmnMRrYVXdO_xx8rQ" } python_object = [ float(form.Wind_Speed.data), float(form.Theoretical_Power_Curve.data), float(form.Wind_Direction.data) ] #Transform python objects to Json #print(python_object) userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = { "input_data": [{ "fields": [ "Wind Speed (m/s)", "Theoretical_Power_Curve (KWh)", "Wind Direction (°)" ], "values": userInput }] } #print(payload_scoring) response_scoring = requests.post( "https://us-south.ml.cloud.ibm.com/ml/v4/deployments/e42cf888-7ee0-4a9c-bddc-3c4adf3fa2cb/predictions?version=2020-12-14", json=payload_scoring, headers=header) print(response_scoring.text) output = json.loads(response_scoring.text) #print(output) for key in output: ab = output[key] for key in ab[0]: bc = ab[0][key] form.abc = bc[0][0] # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): #API_KEY = "<IBM Cloud API key>" #Select Account > Users, go to Manage > Access (IAM) > API keys. API_KEY = "GjBEDX7Pq5jMNaP97G9XbYDX_nhU2EO3HOgRvYibRFg6" token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey": API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'}) mltoken = token_response.json()["access_token"] header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken} if( form.case.data == None and form.symptoms_start_date.data == None and form.diagnosys_date.data == None and form.city.data == None and form.locality.data == None and form.age.data == None and form.age_unit.data == None and form.sex.data == None and form.contagion_type.data == None and form.current_location.data == None ): python_object = [] else: python_object = [form.case.data, form.symptoms_start_date.data, form.diagnosys_date.data, form.city.data, form.locality.data, form.age.data, form.age_unit.data, form.sex.data, form.contagion_type.data, form.current_location.data ] #Transform python objects to Json userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = {"input_data": [{"fields": ["case", "symptoms_start_date", "diagnosys_date", "city", "locality", "age", "age_unit", "sex", "contagion_type", "current_location" ], "values": userInput }]} print(payload_scoring) # response_scoring = requests.post("https://us-south.ml.cloud.ibm.com/ml/v4/deployments/<deployment-id-goes-here>/predictions?version=<DATE>", json=payload_scoring, headers=header) response_scoring = requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/2aa265c9-4684-4ae6-8d75-fd998592f5b8/predictions?version=2021-04-30', json=payload_scoring, headers={'Authorization': 'Bearer ' + mltoken}) output = json.loads(response_scoring.text) print("Salida") print(output) print("Salida") form.abc = "" if 'predictions' in output.keys(): ab = output['predictions'] for key in ab[0]: bc = ab[0][key] # form.abc = roundedCharge # this returns the response back to the front page form.abc = bc[0][0] # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # NOTE: you should not use your apikey in plain text consider using iam_token directly in PROD enviroments. API_KEY = "<Your APIKEY here>" token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey": API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'}) mltoken = token_response.json()["access_token"] # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken} if(form.bmi.data == None): python_object = [] else: python_object = [form.age.data, form.sex.data, float(form.bmi.data), form.children.data, form.smoker.data, form.region.data] #Transform python objects to Json userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = {"input_data": [{"fields": ["age", "sex", "bmi", "children", "smoker", "region"], "values": userInput }]} response_scoring = requests.post("https://us-south.ml.cloud.ibm.com/ml/v4/deployments/<Your deployment ID here>/predictions?version=2020-09-01", json=payload_scoring, headers=header) output = json.loads(response_scoring.text) print(output) for key in output: ab = output[key] for key in ab[0]: bc = ab[0][key] roundedCharge = round(bc[0][0],2) form.abc = roundedCharge # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # NOTE: generate iam_token and retrieve ml_instance_id based on provided documentation header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + "eyJraWQiOiIyMDIwMDUyNTE4MzAiLCJhbGciOiJSUzI1NiJ9.eyJpYW1faWQiOiJpYW0tU2VydmljZUlkLTIzMWI5OTYyLWExN2ItNDI3OC05YmY3LTQ3Y2RkMDgwYjc2ZCIsImlkIjoiaWFtLVNlcnZpY2VJZC0yMzFiOTk2Mi1hMTdiLTQyNzgtOWJmNy00N2NkZDA4MGI3NmQiLCJyZWFsbWlkIjoiaWFtIiwiaWRlbnRpZmllciI6IlNlcnZpY2VJZC0yMzFiOTk2Mi1hMTdiLTQyNzgtOWJmNy00N2NkZDA4MGI3NmQiLCJuYW1lIjoid2RwLXdyaXRlciIsInN1YiI6IlNlcnZpY2VJZC0yMzFiOTk2Mi1hMTdiLTQyNzgtOWJmNy00N2NkZDA4MGI3NmQiLCJzdWJfdHlwZSI6IlNlcnZpY2VJZCIsImFjY291bnQiOnsidmFsaWQiOnRydWUsImJzcyI6IjkzZWFmZDU2MjNlYTRjMGFhNWYwOWVmOTQ1MjkxOGEyIn0sImlhdCI6MTU5MTYzMTIxOCwiZXhwIjoxNTkxNjM0ODE4LCJpc3MiOiJodHRwczovL2lhbS5ibHVlbWl4Lm5ldC9pZGVudGl0eSIsImdyYW50X3R5cGUiOiJ1cm46aWJtOnBhcmFtczpvYXV0aDpncmFudC10eXBlOmFwaWtleSIsInNjb3BlIjoiaWJtIG9wZW5pZCIsImNsaWVudF9pZCI6ImRlZmF1bHQiLCJhY3IiOjEsImFtciI6WyJwd2QiXX0.irk9heVcOtqTkLLWsYoQFM_hP_fjSVDgaxN7letIojAQUSuQUPW2YlVLoWTTQUIVw5vuvQC75JxBhP7OzFRjI87a7AEkrUN30BjACaLLTs8DM6xBA2hJc74enoi3lJ4dDhIlDt_yeCh0oBxxu14R6jqCP9Vem47mhJ1GaVFM9M5n4sT25PnAcG_u35DDC81GIYbhdFedE1IAI8roxplH2B0ZVqWjfHL5E2feZ37mM1e5QFl4Y_5p6T5kbjeb12kneAEegkS56obfG3V4ymOzv-r_RJZT8zSP4gxT6cskOZ2IpExgXi4AMXRvC6-5mwOLXMJJ2ZUkGinZjtV0HGl9uA","refresh_token":"OKCQYya-8VbNzh7hW0khQVl3S6qk4aBciH2DX77fW9_YQxyfvFzdjIMX1D8DmHICPI-G86hLGlZduLSC_Occ5VeoiRW_GiCOs6CtdI10VgRhnVgowy5sYPf3z6KQfWJX6hmZu004ka2VWvMCF8VcqqasO-1ZACJX2xfn_NNrR2titFudDlZCyUqC8IeqJ5YAgW8rZlyw7lBXxN4M_A9m7v3p2L2QJS71SBKm8FjIDyp7b0QX_lpPW2mGlFl18cemHp_fciuWGlTt-XyiMbpJuHFkSxSVrjfpyRlgBmqfyUZnii8cQDLydxexS08SQZ6zmtW-KmYCzy6Zb1xsQYeQnSLoaJTPpHtRro5yN0L9aC_tSM9BwMrMLQ_ZiWYxKqnApghFdc6QCpVoxAsqs4uXozgpafDA99Ww0x49ssDw9_tdJ8uUJWQH24Gkqvl_ePJT1-IgTvIVAbM1zwEWiuAT6AXc60Kwm-8qypokkng1AE_djkeK5epOFo70jKHTPhUEy-pscBezOttQ2-noORZJTrkifePlkfiEI05FxGDZiix1NV0Mf2TTRcdQnEYtgVLzUx9SZdUrpBb09rNIvGrMtdXBg-Fy1qhPMi_90MXO1y1Dn6CcwVVp2my7WMuIQswWQ43nwpfkyAML_yk3bvekl1dTGVYKpJvDnuqJzEW4vZ_iAbInQHwHsXIpmVCaFBw1ZuMjOQZ14dz_ugvkI7sy0N0P0SuFM5Ppx_07H2X5bcQa3CQRWYSOM9DdCcHhojE8xvgQzpTOPBvayoA58DosN03r7Jffz0wtAow4kYPl8_GQYfFA5t5AUONNHrIe7RC1d76NAZBSJElgQzdv7oQIdSAdjAKUR3B1WJ-LcmiX2wFoaR0-Ecxhgo130-J0BCbHoRk73OSxGmFfHVNPVlo0wbpYbOLOgdMBisCkRsmh1eI54OKPSXkuJ-LjXHyALIxu9ewhkuj-eKo_IXSMwmBDN1Z3rMvA3GQu8hcWjxZYcVb5DU_0-M-3ZMPYm8BNd9-Swwmh3bUtpe3u9PkAN4k_I0GOknwJp8nAANsBNHeoxi64rw", 'ML-Instance-ID': "9c3b2402-9562-439e-8df2-9545ed40c34a"} if(form.ingreso_mensual.data == None): python_object = [] else: python_object = [form.edad.data, form.estado_civil.data, float(form.ingreso_mensual.data), form.anios_laboral.data, form.hijos.data, form.region.data] #Transform python objects to Json userInput = [] userInput.append(python_object) # NOTE: manually define and pass the array(s) of values to be scored in the next line payload_scoring = {"input_data": [{"fields": ["edad", "estado_civil", "ingreso_mensual", "anios_laboral", "hijos", "region"], "values": userInput }]} response_scoring = requests.post("https://us-south.ml.cloud.ibm.com/v4/deployments/c2f3ae93-dfce-4ce6-8eb5-9378209a7e35/predictions", json=payload_scoring, headers=header) output = json.loads(response_scoring.text) print(output) for key in output: ab = output[key] for key in ab[1]: bc = ab[0][key] roundedCharge = round(bc[0][0],2) form.abc = roundedCharge # this returns the response back to the front page return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): # Replace the following key with the IAM Key that you have generated. iamkey = 'YOUR IAM KEY GOES HERE' deployment_id = 'YOUR DEPLOYMENT ID GOES HERE' iam_token_response = requests.post( 'https://iam.cloud.ibm.com/oidc/token', headers={'Content-Type': 'application/x-www-form-urlencoded'}, data={ 'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': iamkey }) iam_token_response_json = json.loads(iam_token_response.text) iam_token = iam_token_response_json["access_token"] header = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + iam_token } if (form.bmi.data == None): python_object = [] else: python_object = [ int(form.pregnancies.data), int(form.glucose.data), int(form.bloodpressure.data), int(form.skinthickness.data), int(form.insulin.data), float(form.bmi.data), float(form.diabetespedigreefunction.data), int(form.age.data) ] userInput = [] userInput.append(python_object) payload_json = { "input_data": [{ "fields": [ "Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age" ], "values": userInput }] } response_scoring = requests.post( f"https://eu-gb.ml.cloud.ibm.com/ml/v4/deployments/{deployment_id}/predictions?version=2021-04-23", json=payload_json, headers=header) output = json.loads(response_scoring.text) for key in output: opt = output[key] for key in opt[0]: bc = opt[0][key] roundedResult = round(bc[0][0], 2) if roundedResult == 1: msg = "Positive - Susceptible to Diabetes" else: msg = "Negative - Not Susceptible to Diabetes" form.outcome = msg return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): if (form.antigen.data == None): python_object = [] else: python_object = [ int(form.patient_age_quantile.data), int(form.patient_addmited_to_regular.data), int(form.patient_addmited_to_semi_intense.data), int(form.patient_addmited_to_intense.data), float(form.platelets.data), float(form.mean_platelet_volume.data), float(form.red_blood_cells.data), float(form.lymphocytes.data), float(form.mean_corpuscular_hemoglobin_concentration.data), float(form.leukocytes.data), float(form.basophils.data), float(form.eosinophils.data), float(form.mean_corpuscular_volum.data), float(form.monocytes.data), float(form.red_blood_cell_distribution_width.data), int(form.antigen.data) ] #Transform python objects to Json userInput = [] userInput.append(python_object) # # NOTE: manually define and pass the array(s) of values to be scored in the next line test_value = { "input_data": [{ "fields": [ "patient_age_quantile", "patient_addmited_to_regular", "patient_addmited_to_semi_intense", "patient_addmited_to_intense", "platelets", "mean_platelet_volume", "red_blood_cells", "lymphocytes", "mean_corpuscular_hemoglobin_concentration", "leukocytes", "basophils", "eosinophils", "mean_corpuscular_volum", "monocytes", "red_blood_cell_distribution_width", "antigen" ], "values": userInput }] } test_value["input_data"][0]["values"][0][0] = get_age( int(test_value["input_data"][0]["values"][0][0])) print(test_value) output = makeRequest(test_value, _run_on_start.first_token) for key in output: ab = output[key] for key in ab[0]: bc = ab[0][key] if (bc[0][0] == 0): result = "Negative to Covid-19 Test" confident = "Condifident of : " + str(round(bc[0][1][0], 3)) else: result = "Positve to Covid-19 Test " confident = "Condifident of : " + str(round(bc[0][1][1], 3)) print(result) form.abc = result form.confi = confident return render_template('index.html', form=form)
def predict(): form = PredictForm() if form.submit(): SearchStr=form.num1.data TOD="Business Logic" k=0 for a in df.index: X=df['Desc'][a] # tokenization X_list = word_tokenize(X.lower()) Y_list = word_tokenize(SearchStr.lower()) # Fetching all stop words sw = stopwords.words('english') V1 =[];V2 =[] # Stop word removal X_set = {lemmatizer.lemmatize(w) for w in X_list if not w in sw} Y_set = {lemmatizer.lemmatize(w) for w in Y_list if not w in sw} UV = X_set.union(Y_set) for w in UV: if w in X_set: V1.append(1) else: V1.append(0) if w in Y_set: V2.append(1) else: V2.append(0) c = 0 # Calculating cosine similarity for i in range(len(UV)): c+= V1[i]*V2[i] cosine = c / float((sum(V1)*sum(V2))**0.5) Final.loc[Final['Defect_desc']== X,'Similarity']=cosine df_Final=Final.copy() #sum=form.num1.data+form.num2.data df_Final=Final[(Final['Similarity']>0) & (Final['Type of Defect']==TOD)].sort_values(by='Similarity',ascending=False).head(3).head(3) #print(df_Final) df_Final=pd.DataFrame.to_html(df_Final) #print(df_Final) form.abc=df_Final #print(form.abc) pd.show_versions() return render_template('index.html', form=form)
def predict(): form = PredictForm() formPredict = DefectPrediction() if form.submit(): SearchStr = form.num1.data k = 0 if (not re.sub('[^A-Za-z0-9]+', '', SearchStr)): output = "Invalid Input" else: print("Anushree!!!") for a in df.index: X = df['Desc'][a] # tokenization X_list = word_tokenize(X.lower()) Y_list = word_tokenize(SearchStr.lower()) # Fetching all stop words sw = stopwords.words('english') V1 = [] V2 = [] # Stop word removal X_set = {lemmatizer.lemmatize(w) for w in X_list if not w in sw} Y_set = {lemmatizer.lemmatize(w) for w in Y_list if not w in sw} UV = X_set.union(Y_set) for w in UV: if w in X_set: V1.append(1) else: V1.append(0) if w in Y_set: V2.append(1) else: V2.append(0) c = 0 # Calculating cosine similarity for i in range(len(UV)): c += V1[i] * V2[i] cosine = c / float((sum(V1) * sum(V2))**0.5) Final.loc[Final['Defect Description'] == X, 'Similarity'] = cosine df_Final = Final.copy() #sum=form.num1.data+form.num2.data df_Final = Final[(Final['Similarity'] > 0)].sort_values( by='Similarity', ascending=False) df_Final = df_Final.drop_duplicates(subset=['Defect Description'], keep='first') df_Final = df_Final[[ 'Release Name', 'Defect ID', 'Defect Description', 'RCA' ]].head(3) #print(df_Final) #df_Final=pd.DataFrame.to_html(df_Final,columns={'Similarity','Defect_desc'},index=False,classes='data') #df_Final=pd.DataFrame.to_records(df_Final,index=False) #form.pd=df_Final output = df_Final.to_html(classes='data', header="true", index=False) #display(HTML(form.abc)) #print(form.abc) return render_template('index.html', form=form, formPredict=formPredict, tables=[output])