def mouseReleaseEvent(self, event):
     self.clear()
     self.inputting = False
     self.fourier = Fourier(self.view, self.path, path_offset=self.start_at,
                            closed=False)
     self.addItem(self.fourier)
     self.go()
示例#2
0
def fourier():
    if request.args.get('function') is None:
        return render_template('fourier.html')
    else:
        fourier_in = cv2.imread('web/lena.jpg', 0)
        fourier_out = Fourier(fourier_in)
        cv2.imwrite('web/static/fourier.jpg', fourier_out)
        return send_file('static/fourier.jpg', mimetype='image/jpeg')
示例#3
0
 def initScene(self):
     self.scene = QGraphicsScene(self)
     self.setScene(self.scene)
     self.setSceneRect(-self.WIDTH/2, -self.HEIGHT/2,
                       self.WIDTH, self.HEIGHT)
     # Pick a random .svg file in svg folder.
     self.fileName = 'svg/' + random.choice(os.listdir('svg/'))
     # Get QPainterPath from said file.
     path, closed = svgToPath(self.fileName)
     scale = getScale(path, 1000, 600, 500, 300)
     self.fourier = Fourier(self, path, scale=scale, closed=closed)
     self.scene.addItem(self.fourier)
示例#4
0
 def rankFeaturesFourier(self, X, y, d=1):
     compare = lambda x, y: cmp(abs(x), abs(y))
     sorted_coeffs = sorted(Fourier(X, y, self.logger).coeff(d).items(),
                            key=operator.itemgetter(1),
                            reverse=True,
                            cmp=compare)
     featureIndices = []
     for ranking in sorted_coeffs:
         for index in ranking[0]:
             if index not in featureIndices:
                 featureIndices.append(index)
     return featureIndices
示例#5
0
def run(Ns, save_anim=False):
    # --- user input ---
    fig, ax = plt.subplots()
    ax.set_xlim([0, 1])
    ax.set_ylim([0, 1])
    draw = Drawer(fig, ax)
    plt.show()

    # --- find Fourier series for drawn shape ---
    fouriers = [Fourier(draw.points, N) for N in Ns]

    # --- plot drawn shape against Fourier approximation ---
    fig, axs = plt.subplots(1, len(Ns))
    ps = draw.points
    t_start, t_end = ps[0, 0].real, ps[-1, 0].real
    ts = np.linspace(t_start, t_end, 100)

    fs = [f(ts) for f in fouriers]
    for ax, f in zip(axs, fs):
        ax.plot(ps[:, 1].real, ps[:, 1].imag)
        ax.plot(f.real, f.imag)

    plt.legend(("User Input", "Fourier Approximation"))
    plt.show()

    # --- animate Fourier drawing ---
    anim_fig, anim_axs = plt.subplots(1, len(Ns))
    anim_fig.suptitle(f"Fourier approximations of orders {Ns}")
    anims = []
    for anim_ax, fourier in zip(anim_axs, fouriers):
        anim_ax.set_xlim([0, 1])
        anim_ax.set_ylim([0, 1])
        anim_ax.set_title(f"N = {len(fourier.n) // 2}")
        anims.append(Animator(anim_ax, fourier))

    group_anim = GroupAnimator(anim_fig, anims, ts[-1])

    if save_anim:
        fig.savefig('images\comparison.png')
        group_anim.save('images\drawing.gif', writer='imagemagick', fps=30)
    plt.show()
示例#6
0
class Operators(Param):
    def __init__(self, param, grid):
        self.list_param = [
            'varname_list', 'tracer_list', 'whosetspsi', 'mpi', 'npx', 'npy',
            'nh', 'gravity', 'f0', 'beta', 'Rd', 'qgoperator', 'order',
            'Kdiff', 'diffusion', 'enforce_momentum', 'isisland', 'aparab',
            'flux_splitting_method', 'hydroepsilon', 'myrank', 'geometry',
            'sqgoperator'
        ]

        param.copy(self, self.list_param)

        self.list_grid = [
            'msk', 'nxl', 'nyl', 'dx', 'dy', 'bcarea', 'mpitools', 'msknoslip',
            'mskbc', 'domain_integration', 'nh', 'xr0', 'yr0', 'i0', 'j0',
            'area'
        ]

        grid.copy(self, self.list_grid)
        self.first_time = True

        # internal work array for the inversion
        self.work = zeros((self.nyl, self.nxl))
        self.work2 = zeros((self.nyl, self.nxl))

        pp = {
            'np': param.npx,
            'mp': param.npy,
            'nh': param.nh,
            'n': param.nx // param.npx,
            'm': param.ny // param.npy,
            'omega': 8. / 9.,
            'npmpmax': 1,
            'verbose': False,
            'dx': grid.dx,
            'dy': grid.dy,
            'n1': 32,
            'n0': 4,
            'method': 'deep',
            'nagglo': 2,
            'hydroepsilon': param.hydroepsilon,
            'relaxation': param.relaxation
        }

        # load the multigrid solver
        #
        # WARNING: the multigrid needs the mask at cell corners!!!
        #         not at cell centers
        mskr = self.msk * 1.

        # this piece is a bit awkward: to initialize gmg, we need
        # a mask with a halo properly filled but the fill_halo method
        # belongs to gmg. We have a circular definition.
        # the trick: define a dummy gmg first a msk=1 everywhere
        # then grab the fill_halo method and redefine once again the
        # multigrid, this time with the proper mask
        # self.gmg = Gmg(pp,mskr)
        # borrow the fill_halo from the multigrid
        # self.fill_halo = self.gmg.grid[0].halo.fill

        fo.celltocorner(mskr, self.work)
        # self.fill_halo(self.work)

        # del self.gmg
        # del self.fill_halo

        self.work[self.work < 1.] = 0.
        self.mskp = self.msk * 0
        self.mskp[self.work == 1.] = 1
        pp['verbose'] = True
        if self.myrank == 0:
            print('-' * 50)
            print(' Multigrid hierarchy')
            print('-' * 50)

        if hasattr(self, 'qgoperator'):
            pp['qgoperator'] = True
            pp['Rd'] = self.Rd
            self.gmg = Gmg(pp, self.work)
        else:
            self.gmg = Gmg(pp, self.work)
        if hasattr(self, 'sqgoperator'):
            self.fourier = Fourier(param, grid)

        # borrow the fill_halo from the multigrid
        self.fill_halo = self.gmg.grid[0].halo.fill
        grid.fill_halo = self.gmg.grid[0].halo.fill

        self.blwidth = param.Lx * 0.05

        # tentative for a regularized no-slip source term
        coef = 0. * zeros_like(self.mskp)
        coef[1:, 1:] = (self.mskp[:-1, 1:] + self.mskp[:-1, :-1] +
                        self.mskp[1:, 1:] + self.mskp[1:, :-1])
        # nbpsibc is the number of land psi-points surrounding a fluid cell
        self.nbpsibc = (4. - coef) * self.msk
        self.nbpsibc[self.nbpsibc > 0] = 1.

        self.set_boundary_msk()

        self.cst = zeros(5, )
        # select the proper flux discretization
        if self.order % 2 == 0:
            self.fortran_adv = fa.adv_centered
            self.cst[0] = grid.dx
            self.cst[1] = grid.dy
            self.cst[2] = 0.05
            self.cst[3] = 0  # umax
            self.cst[4] = 0  # unused
            # should be updated at each timestep
            # self.cst[3]=param.umax

        else:
            self.fortran_adv = fa.adv_upwind
            self.cst[0] = grid.dx
            self.cst[1] = grid.dy
            self.cst[2] = 0.05
            self.cst[3] = 0  # umax
            self.cst[4] = self.aparab
            # should be updated at each timestep
            # self.cst[3]=param.umax

        # controls the flux splitting method
        # 0 = min/max
        # 1 = parabolic
        list_fs_method = ['minmax', 'parabolic']
        if self.flux_splitting_method in list_fs_method:
            self.fs_method = list_fs_method.index(self.flux_splitting_method)
        else:
            print('Warning: %s does not exist' % self.flux_splitting_method)
            print('replaced with the default: parabolic')
            self.fs_method = list_fs_method.index('parabolic')

        # these coefficients below are used for the thermalwind model
        coef = 0. * zeros_like(self.msk)
        coef[1:-1, 1:-1] = self.msk[1:-1, 2:] + self.msk[1:-1, 0:-2]
        coef[coef < 2] = 0.
        coef[coef == 2] = 0.5
        self.fill_halo(coef)
        self.coefb = coef * 1.

        coef = 0. * zeros_like(self.msk)
        coef[1:-1, 1:-1] = self.msk[2:, 1:-1] + self.msk[0:-2, 1:-1]
        coef[coef < 2] = 0.
        coef[coef == 2] = 0.5
        self.fill_halo(coef)
        self.coefV = coef * 1.

        if type(self.Kdiff) != dict:
            K = self.Kdiff
            self.Kdiff = {}
            for trac in self.tracer_list:
                self.Kdiff[trac] = K
        if self.diffusion:
            print('diffusion coefficients')
            print('  => ', self.Kdiff)

    def set_boundary_msk(self):
        """ for the no slip boundary source term """
        # nh = self.nh
        msk = self.msknoslip
        z = (roll(msk, -1, axis=1) + roll(msk, -1, axis=0) +
             roll(msk, +1, axis=1) + roll(msk, +1, axis=0) - 4 * msk)
        z = z * msk
        self.mskbc = self.msk * 0
        self.mskbc[z < 0] = 1
        # the halo will be filled later in operator.py
        # when fill_halo will become available
        # we can now fix the boundary mask

        # to go with the new definition for the source term
        # self.mskbc = self.nbpsibc.copy()

        self.mskbc *= self.msknoslip
        self.fill_halo(self.mskbc)

        # idx in the 2D array where boundary terms are computed
        # used for storage and i/o
        # self.idxbc = where(self.mskbc==1)

        self.bcarea = self.domain_integration(self.mskbc)
        self.x2bc = self.domain_integration(
            (self.xr0)**2 * self.mskbc * self.msknoslip)
        self.y2bc = self.domain_integration(
            (self.yr0)**2 * self.mskbc * self.msknoslip)

        return

        def smooth(msk, msk0, k):
            y = (+roll(msk, -1, axis=1) + roll(msk, -1, axis=0) +
                 roll(msk, +1, axis=1) + roll(msk, +1, axis=0))
            z = msk * 1.
            z[y > 0] = k + 1
            z[msk > 0] = msk[msk > 0]
            z[msk0 == 0] = 0
            self.fill_halo(z)
            return z

        z0 = 1 - msk * 1.
        nk = int(round((self.blwidth / self.dx)))
        nk = 1
        for k in range(nk):
            z = z0 * 1.
            z0 = smooth(z, msk, k)
        z0[z0 == 0] = nk
        z0 = z0 / nk
        z0 *= msk
        z0 = (1. - z0)**(nk / 2.)
        z0[msk == 0] = 1
        self.cv = (roll(z0, -1, axis=1) + z0) * .5
        self.cu = (roll(z0, -1, axis=0) + z0) * .5
#        self.mskbc = z0
#        self.bcarea = self.domain_integration(z0)

    def rhs_adv(self, x, t, dxdt):
        """ compute -div(u*tracer) using finite volume flux discretization
        the flux is computed at edge cells using p-th order interpolation
        for p even, the flux is centered
        for p odd, the flux is upwinded (more points on the upwind side) """
        iu = self.varname_list.index('u')
        iv = self.varname_list.index('v')
        u = x[iu]
        v = x[iv]

        for trac in self.tracer_list:
            ik = self.varname_list.index(trac)
            y = dxdt[ik]
            self.fortran_adv(self.msk, x[ik], y, u, v, self.cst, self.nh,
                             self.fs_method, self.order)
            self.fill_halo(y)
            # for an unknown reason dxdt[ik] is
            # not updated by the Fortran routine
            # it should be done manually
            # (this yields an excessive data movement)
            dxdt[ik][:, :] = y

    def wallshear(self, x, shear):
        # ip = self.varname_list.index('psi')

        # meansource = fo.computewallshear(self.msk, x[ip],
        #                                  shear, self.dx, self.nh)
        return

    def rhs_noslip(self, x, source):
        """ add the vorticity source term along the boundary to enforce
        zero tangential velocity (=no-slip) """

        ip = self.varname_list.index('psi')
        # iu = self.varname_list.index('u')
        # iv = self.varname_list.index('v')
        iw = self.varname_list.index(self.whosetspsi)

        fo.cornertocell(x[ip], self.work)

        meansource = fo.computenoslipsourceterm(self.msknoslip, x[ip],
                                                self.work, self.dx, self.dy,
                                                self.nh)

        # K = self.dx*self.dy * 0.25
        # self.work2[:, :] = self.work[:, :]
        # for kt in range(2):
        #     fo.add_diffusion(self.msk, self.work, self.dx,
        #                      self.nh, K, self.work2)
        #     self.fill_halo(self.work2)
        #     fo.add_diffusion(self.msk, self.work2, self.dx,
        #                      self.nh, K, self.work)
        #     self.fill_halo(self.work)

        # # self.work =  self.work/(self.dx**2)*self.mskbc

        source[:, :] = self.work

        # this step is SUPER important to ensure GLOBAL vorticity conservation
        meansource = self.domain_integration(source) / self.bcarea

        source -= meansource * self.mskbc

        if self.enforce_momentum:
            xr = self.xr0
            yr = self.yr0
            # this step ensures the zero momentum
            px = fd.computedotprod(self.msk, source, xr, self.nh)
            py = fd.computedotprod(self.msk, source, yr, self.nh)
            cst = self.mpitools.local_to_global([(px, 'sum'), (py, 'sum')])

            px, py = cst[0] / self.x2bc, cst[1] / self.y2bc
            source -= (px * xr + py * yr) * self.mskbc

        self.fill_halo(source)
        x[iw] -= source

    def rhs_diffusion(self, x, t, dxdt, coef=1.):
        """ add a diffusion term on the tracer variables """

        for trac in self.tracer_list:
            ik = self.varname_list.index(trac)
            y = dxdt[ik]
            fo.add_diffusion(self.msk, x[ik], self.dx, self.nh,
                             coef * self.Kdiff[trac], y)
            self.fill_halo(y)
            dxdt[ik] = y

    def rhs_torque(self, x, t, dxdt):
        """ compute g*db/dx for the Boussinesq model """
        ib = self.varname_list.index('buoyancy')
        iw = self.varname_list.index('vorticity')

        y = dxdt[iw]
        b = x[ib]
        #y[1:-1, 1:-1] += self.gravity*self.diffx(b)
        y *= self.msk
        fo.add_torque(self.msk, b, self.dx, self.nh, self.gravity, y)
        self.fill_halo(y)
        dxdt[iw][:, :] = y

    def rhs_torque_density(self, x, t, dxdt):
        """ compute g*db/dx for the Boussinesq model """
        ib = self.varname_list.index('density')
        iw = self.varname_list.index('vorticity')

        y = dxdt[iw]
        b = x[ib]
        #y[1:-1, 1:-1] += self.gravity*self.diffx(b)
        # y *= self.msk
        # trick: use -gravity to account that density is opposite to buoyancy
        fo.add_torque(self.msk, b, self.dx, self.nh, -self.gravity, y)
        self.fill_halo(y)
        dxdt[iw][:, :] = y

    def diffx(self, x):
        nh = self.nh
        if self.i0 == self.npx - 1:
            x[:, -nh] = 2 * x[:, -nh - 1] - x[:, -nh - 2]
        if self.i0 == 0:
            x[:, nh - 1] = 2 * x[:, nh] - x[:, nh + 1]
        return 0.5 * (x[1:-1, 2:] - x[1:-1, :-2]) / self.dx

    def diff1x(self, x):
        nh = self.nh
        if self.i0 == self.npx - 1:
            x[:, -nh] = 2 * x[:, -nh - 1] - x[:, -nh - 2]
        if self.i0 == 0:
            x[:, nh - 1] = 2 * x[:, nh] - x[:, nh + 1]
        return (x[:, 1:] - x[:, :-1]) / self.dx

    def diffz(self, x):
        nh = self.nh
        if self.j0 == self.npy - 1:
            x[-nh, :] = 2 * x[-nh - 1, :] - x[-nh - 2, :]
        if self.j0 == 0:
            x[nh - 1, :] = 2 * x[nh, :] - x[nh + 1, :]
        return 0.5 * (x[2:, 1:-1] - x[:-2, 1:-1]) / self.dy

    def jacobian(self, x, y):
        return self.diffx(x) * self.diffz(y) - self.diffz(x) * self.diffx(y)

    def rhs_thermalwind(self, x, t, dxdt):

        iu = self.varname_list.index('u')
        ib = self.varname_list.index('buoyancy')
        iw = self.varname_list.index('vorticity')
        iV = self.varname_list.index('V')

        nh = self.nh

        # add the themal wind balance
        # g*db/dx + f0*dV/dz
        # to domega/dt
        b = x[ib]
        V = x[iV]
        dw = dxdt[iw]
        y = self.work
        # dw[1:-1, 1:-1] += self.diffx(b)*self.gravity
        # dw[1:-1, 1:-1] -= self.diffz(V)*self.f0

        y[1:-1, 1:-1] = self.diffx(b) * self.gravity
        y[1:-1, 1:-1] -= self.diffz(V) * self.f0

        # dw[1:-1, 1:-1] += self.coefb[1:-1, 1:-1]*self.diffx(b)*self.gravity
        # dw[1:-1, 1:-1] -= self.coefV[1:-1, 1:-1]*self.diffz(V)*self.f0
        # dw[:, :nh+1] = 0
        # dw[:, -nh-1:] = 0
        y *= self.msk
        self.fill_halo(y)
        dw[:, :] += y

        u = x[iu]
        # dxdt[iV][:, 1:] -= 0.5*self.f0*(u[:, :-1]+u[:, 1:])
        # dxdt[iV] *= self.msk
        # self.fill_halo(dxdt[iV])
        y[:, 1:] = -0.5 * self.f0 * (u[:, :-1] + u[:, 1:])
        y *= self.msk
        self.fill_halo(y)
        dxdt[iV][:, :] += y

    def fourier_invert_vorticity(self, x, flag='full'):
        """ invert using Fourier transform """
        iu = self.varname_list.index('u')
        iv = self.varname_list.index('v')
        ip = self.varname_list.index('psi')
        ivor = self.varname_list.index('vorticity')
        ipv = self.varname_list.index('pv')

        u = x[iu]
        v = x[iv]
        psi = x[ip]
        pv = x[ipv]
        vor = x[ivor]

        self.fourier.invert(pv, psi, vor)
        self.fill_halo(psi)
        self.fill_halo(vor)

        self.first_time = False

        # compute (u,v) @ U,V points from psi @ cell corner
        fo.computeorthogradient(self.msk, psi, self.dx, self.dy, self.nh, u, v)
        x[iu] = u
        x[iv] = v

    def invert_vorticity(self, x, flag='full', island=False):
        """ compute psi from vorticity (or 'whosetspsi' in general)

        this routine interpolates the vorticity from cell centers to
        cell corners (where psi is defined)

        it then solves div*grad psi = omega with psi=0 along the boundary
        (Dirichlet condition) using a multigrid

        the non-divergent velocity is computed from psi"""
        iu = self.varname_list.index('u')
        iv = self.varname_list.index('v')
        ip = self.varname_list.index('psi')
        iw = self.varname_list.index(self.whosetspsi)

        u = x[iu]
        v = x[iv]
        psi = x[ip]

        fo.celltocorner(x[iw], self.work)
        #fo.celltocornerbicubic(x[iw], self.work)
        if island:
            # correcting RHS for islands
            self.work[:, :] -= self.rhsp

        if flag == 'fast':
            ite, res = self.gmg.twoVcycle(psi, self.work, {
                'maxite': 1,
                'tol': 1e-6,
                'verbose': True
            })
            # ite, res = self.gmg.solve(psi, self.work,
            #                           {'maxite': 2,
            #                            'tol': 1e-8,
            #                            'verbose': False})

        else:
            # compute to machine accuracy
            if self.first_time:
                verbose = True
            else:
                verbose = False
            if (self.myrank == 0) and verbose:
                print('-' * 50)
                print(' Convergence of the vorticity inversion')
                print('    the residual should decrease by several orders')
                print('    of magnitude otherwise something is wrong')
                print('-' * 50)

            ite, res = self.gmg.solve(psi, self.work, {
                'maxite': 4,
                'tol': 1e-11,
                'verbose': verbose
            })
            if self.geometry == 'perio':
                # make sure psi has zero mean (to avoid the drift)
                psim = self.domain_integration(psi) / self.area
                psi -= psim

        # don't apply the fill_halo on it
        # [because fill_halo, as it is, is applying periodic BC]
        psi = psi * self.mskp
        if island:
            # we set psi on the boundary values by adding
            # self.psi (defined in island module)
            # before that line, psi=0 along all boundaries
            psi += self.psi
            # it should be added only if we invert for the total psi
            # it should not be added if we compute the increment of psi

        self.first_time = False

        # compute (u,v) @ U,V points from psi @ cell corner
        fo.computeorthogradient(self.msk, psi, self.dx, self.dy, self.nh, u, v)
        # self.fill_halo(u)
        # self.fill_halo(v)
        x[iu] = u
        x[iv] = v
        x[ip] = psi
示例#7
0
    def __init__(self, param, grid):
        self.list_param = [
            'varname_list', 'tracer_list', 'whosetspsi', 'mpi', 'npx', 'npy',
            'nh', 'gravity', 'f0', 'beta', 'Rd', 'qgoperator', 'order',
            'Kdiff', 'diffusion', 'enforce_momentum', 'isisland', 'aparab',
            'flux_splitting_method', 'hydroepsilon', 'myrank', 'geometry',
            'sqgoperator'
        ]

        param.copy(self, self.list_param)

        self.list_grid = [
            'msk', 'nxl', 'nyl', 'dx', 'dy', 'bcarea', 'mpitools', 'msknoslip',
            'mskbc', 'domain_integration', 'nh', 'xr0', 'yr0', 'i0', 'j0',
            'area'
        ]

        grid.copy(self, self.list_grid)
        self.first_time = True

        # internal work array for the inversion
        self.work = zeros((self.nyl, self.nxl))
        self.work2 = zeros((self.nyl, self.nxl))

        pp = {
            'np': param.npx,
            'mp': param.npy,
            'nh': param.nh,
            'n': param.nx // param.npx,
            'm': param.ny // param.npy,
            'omega': 8. / 9.,
            'npmpmax': 1,
            'verbose': False,
            'dx': grid.dx,
            'dy': grid.dy,
            'n1': 32,
            'n0': 4,
            'method': 'deep',
            'nagglo': 2,
            'hydroepsilon': param.hydroepsilon,
            'relaxation': param.relaxation
        }

        # load the multigrid solver
        #
        # WARNING: the multigrid needs the mask at cell corners!!!
        #         not at cell centers
        mskr = self.msk * 1.

        # this piece is a bit awkward: to initialize gmg, we need
        # a mask with a halo properly filled but the fill_halo method
        # belongs to gmg. We have a circular definition.
        # the trick: define a dummy gmg first a msk=1 everywhere
        # then grab the fill_halo method and redefine once again the
        # multigrid, this time with the proper mask
        # self.gmg = Gmg(pp,mskr)
        # borrow the fill_halo from the multigrid
        # self.fill_halo = self.gmg.grid[0].halo.fill

        fo.celltocorner(mskr, self.work)
        # self.fill_halo(self.work)

        # del self.gmg
        # del self.fill_halo

        self.work[self.work < 1.] = 0.
        self.mskp = self.msk * 0
        self.mskp[self.work == 1.] = 1
        pp['verbose'] = True
        if self.myrank == 0:
            print('-' * 50)
            print(' Multigrid hierarchy')
            print('-' * 50)

        if hasattr(self, 'qgoperator'):
            pp['qgoperator'] = True
            pp['Rd'] = self.Rd
            self.gmg = Gmg(pp, self.work)
        else:
            self.gmg = Gmg(pp, self.work)
        if hasattr(self, 'sqgoperator'):
            self.fourier = Fourier(param, grid)

        # borrow the fill_halo from the multigrid
        self.fill_halo = self.gmg.grid[0].halo.fill
        grid.fill_halo = self.gmg.grid[0].halo.fill

        self.blwidth = param.Lx * 0.05

        # tentative for a regularized no-slip source term
        coef = 0. * zeros_like(self.mskp)
        coef[1:, 1:] = (self.mskp[:-1, 1:] + self.mskp[:-1, :-1] +
                        self.mskp[1:, 1:] + self.mskp[1:, :-1])
        # nbpsibc is the number of land psi-points surrounding a fluid cell
        self.nbpsibc = (4. - coef) * self.msk
        self.nbpsibc[self.nbpsibc > 0] = 1.

        self.set_boundary_msk()

        self.cst = zeros(5, )
        # select the proper flux discretization
        if self.order % 2 == 0:
            self.fortran_adv = fa.adv_centered
            self.cst[0] = grid.dx
            self.cst[1] = grid.dy
            self.cst[2] = 0.05
            self.cst[3] = 0  # umax
            self.cst[4] = 0  # unused
            # should be updated at each timestep
            # self.cst[3]=param.umax

        else:
            self.fortran_adv = fa.adv_upwind
            self.cst[0] = grid.dx
            self.cst[1] = grid.dy
            self.cst[2] = 0.05
            self.cst[3] = 0  # umax
            self.cst[4] = self.aparab
            # should be updated at each timestep
            # self.cst[3]=param.umax

        # controls the flux splitting method
        # 0 = min/max
        # 1 = parabolic
        list_fs_method = ['minmax', 'parabolic']
        if self.flux_splitting_method in list_fs_method:
            self.fs_method = list_fs_method.index(self.flux_splitting_method)
        else:
            print('Warning: %s does not exist' % self.flux_splitting_method)
            print('replaced with the default: parabolic')
            self.fs_method = list_fs_method.index('parabolic')

        # these coefficients below are used for the thermalwind model
        coef = 0. * zeros_like(self.msk)
        coef[1:-1, 1:-1] = self.msk[1:-1, 2:] + self.msk[1:-1, 0:-2]
        coef[coef < 2] = 0.
        coef[coef == 2] = 0.5
        self.fill_halo(coef)
        self.coefb = coef * 1.

        coef = 0. * zeros_like(self.msk)
        coef[1:-1, 1:-1] = self.msk[2:, 1:-1] + self.msk[0:-2, 1:-1]
        coef[coef < 2] = 0.
        coef[coef == 2] = 0.5
        self.fill_halo(coef)
        self.coefV = coef * 1.

        if type(self.Kdiff) != dict:
            K = self.Kdiff
            self.Kdiff = {}
            for trac in self.tracer_list:
                self.Kdiff[trac] = K
        if self.diffusion:
            print('diffusion coefficients')
            print('  => ', self.Kdiff)
示例#8
0
from image import Image
from fourier import Fourier
from plot import Plot

im = Image("house.jpg", (200, 200))
path = im.sort()
period, tup_circle_rads, tup_circle_locs = Fourier(n_approx=1000,
                                                   coord_1=path).get_circles()
Plot(period, tup_circle_rads, tup_circle_locs, speed=80).plot()
示例#9
0
                 date_parser=dateparse)
vt = df[df.Category == 'VEHICLE THEFT']  # Vehicle Theft Data
mydate = vt['Dates']
nd = len(mydate)
print "%d crimes in total" % nd
tw = np.zeros(nd)  # array of times in weeks
ni = np.linspace(0, nd - 1, nd, dtype=np.int)
mydate.index = ni
for i in range(0, nd):
    tw[i] = (mydate[i] - t0).total_seconds()
    tw[i] /= swk
# Now get Fourier curve
nw = 323
t = np.linspace(0.5, 644.5, nw)
#MyF = Fourier(645.0, 20, 52.1775, 12, 1.0, 6, 1.0/7.0, 6, df)
MyF = Fourier(645.0, 16, 52.1775, 12, 1.0, 0, 1.0 / 7.0, 0, df, t0)
MyF.compute()
fv = np.empty(nw)
#fv.fill(2700.0)
for i in range(0, nw):
    fv[i] = MyF.f(t[i], 'VEHICLE THEFT')
    fv[i] *= nd + 0.0
    fv[i] /= 322.0
# Got Fourier curve

plt.hist(tw, bins=322)  # 645 weeks but we only have alternating weeks
plt.plot(t, fv, linewidth=2.5)
plt.title("Vehicle Theft History")
plt.xlabel("Weeks")
plt.ylabel("Thefts per week")
plt.savefig('time-3.png')
示例#10
0
文件: f2b.py 项目: rochSmets/myPywi
mytimes, mygroups = run.getTimeGroups(time)
#
ds = float(run.dl)
dt = float(mytimes[1] - mytimes[0])
#
numoftimes = mytimes.__len__()
numofcells = int(run.ncells) + 1
#
data = np.empty([numoftimes, numofcells], dtype=complex, order='C')
#
# then fill the data for input fft
for it in range(mytimes.__len__()):
    data[it, :].real = run.GetB(mytimes[it])[..., 2]
    data[it, :].imag = 0.0
#
f = Fourier(data, field=field, domain=domain)
#
#
# .. draw the plot
plo = Colp(colordata=[
    f.xdata / float(run.dl), f.ydata / float(mytimes[1] - mytimes[0]), f.zdata
],
           bounds=bounds,
           colormap=colormap,
           contourdata=None,
           flines=None,
           arrowdata=None,
           labels=['$k$', '$\omega$'],
           ticks=ticks,
           subticks=subticks,
           figsize=figsize,
示例#11
0
import matplotlib.pyplot as pt
from fourier import Fourier
import numpy as np

t = np.arange(0.0, 8, 0.01)

print(t.shape[0])

s1 = np.sin(2 * np.pi * t)
s2 = np.cos(4 * np.pi * t) + s1
s3 = np.random.random(128)

jf = Fourier()

#f_s1 = jf.Fast(s1)
#f_s2 = jf.Fast(s2)
#f_s3 = jf.Fast(s3)
f_s1 = np.fft.fft(s1)
#f_s2 = np.fft.fft(s2)
f_s2 = jf.Fast(s2, vect=False)
f_s3 = np.fft.fft(s3)

m_s1 = jf.complex_to_linear(f_s1)
m_s2 = jf.complex_to_linear(f_s2)
m_s3 = jf.complex_to_linear(f_s3)

fig, ax = pt.subplots(3, 3)

ax[0, 0].plot(t, s1)

ax[0, 1].plot(t, s2)
示例#12
0
import math
from datetime import datetime
from fourier import Fourier

twopi = 2.0 * math.pi
t0 = np.datetime64("2003-01-01")       


## read training file
z = zipfile.ZipFile('../train.csv.zip')
dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
df = pd.read_csv(z.open('train.csv'), parse_dates=['Dates'], date_parser=dateparse)

#crime_category = df['Category'] # list of crime types
#group = df.groupby('Category')
#freq = group.size()   # histogram of crime types
#cr_index = freq.index.values  
#Nc = len(cr_index)    # number of crime types
#cr_a_index = pd.DataFrame(data = np.arange(Nc, dtype=np.int), index = cr_index) 
#cr_a_index = cr_a_index[0] # this now holds the index for each crime type

MyF = Fourier(645.0, 20, 52.1775, 12, 1.0, 6, 1.0/7.0, 6, df)
MyF.compute()
MyF.graph()  

## read testing file
#z = zipfile.ZipFile('../test.csv.zip')
#df = pd.read_csv(z.open('train.csv'), parse_dates=['Dates'], date_parser=dateparse)


示例#13
0
文件: embed.py 项目: fyang93/BURST
                        type=str,
                        help="directory to embeddings")
    parser.add_argument('--pca', action='store_true', help="apply pca or not")
    parser.add_argument('--pca_path', type=str, help="path to pca file")
    parser.add_argument('--periods',
                        type=int,
                        nargs='+',
                        help="list of periods")
    parser.add_argument('--mean',
                        action='store_true',
                        help="use mean descriptor or not")
    parser.add_argument('--events',
                        type=int,
                        nargs='+',
                        default=range(1, 14),
                        help="list of events")
    args = parser.parse_args()
    if not os.path.exists(args.embed_dir):
        os.makedirs(args.embed_dir)
    apply_pca = args.pca
    use_mean = args.mean
    if apply_pca:
        assert os.path.exists(args.pca_path)
        pca = utils.load(args.pca_path)
    if not use_mean:
        periods = args.periods
        fourier = Fourier(periods)
        timestamps_dict = fourier.get_timestamps()
    embed = Embed(args.infos_dir, args.embed_dir)
    embed(args.events)
示例#14
0
df = pd.read_csv(z.open('train.csv'), parse_dates=['Dates'], date_parser=dateparse)
vt = df[df.Category == 'VEHICLE THEFT'] # Vehicle Theft Data
mydate = vt['Dates']
nd = len(mydate)
print "%d crimes in total" % nd
tw = np.zeros(nd) # array of times in weeks 
ni = np.linspace(0, nd-1, nd, dtype=np.int)
mydate.index = ni
for i in range (0, nd):
   tw[i] = (mydate[i]-t0).total_seconds()
   tw[i] /= swk
# Now get Fourier curve
nw = 323   
t = np.linspace(0.5, 644.5, nw)
#MyF = Fourier(645.0, 20, 52.1775, 12, 1.0, 6, 1.0/7.0, 6, df)
MyF = Fourier(645.0, 16, 52.1775, 12, 1.0, 0, 1.0/7.0, 0, df, t0)
MyF.compute()
fv = np.empty(nw)
#fv.fill(2700.0)
for i in range(0, nw):
   fv[i] = MyF.f(t[i], 'VEHICLE THEFT')
   fv[i] *= nd + 0.0
   fv[i] /= 322.0
# Got Fourier curve

plt.hist(tw, bins=322) # 645 weeks but we only have alternating weeks
plt.plot(t, fv, linewidth=2.5)
plt.title("Vehicle Theft History")
plt.xlabel("Weeks")
plt.ylabel("Thefts per week")
plt.savefig('time-3.png')
示例#15
0
print "%d crimes in total" % nd
tw = np.zeros(nd) # array of times in weeks 
ni = np.linspace(0, nd-1, nd, dtype=np.int)
mydate.index = ni
for i in range (0, nd):
   tw[i] = (mydate[i]-t0).total_seconds()
   tw[i] /= swk
tw = tw[tw <= 100.0] # only times in the first 100 weeks
tw = tw % 1
tw = tw * 7
nc = len(tw)
# Now get Fourier curve
nw = 336   
nb = 84
t = np.linspace(0.0, 1.0, nw)
MyF = Fourier(645.0, 16, 52.1775, 12, 1.0, 6, 1.0/7.0, 8, df, t0)
MyF.compute()
fv = np.empty(nw)
#fv.fill(2700.0)
for i in range(0, nw):
   fv[i] = 0.0
   for j in range(0, 50):
      #fv[i] = MyF.f(t[i], 'DRUNKENNESS')
      fv[i] += MyF.f(t[i] + j * 2.0, 'LARCENY/THEFT')
   fv[i] *= nc + 0.0  # nc - number of crimes
   fv[i] /= 50.0 * nb # nb - number of histogram bins
# Got Fourier curve
t = t * 7

plt.hist(tw, bins=nb) # 645 weeks but we only have alternating weeks
plt.plot(t, fv, linewidth=2.5)
示例#16
0
import csv
import math
from datetime import datetime
from fourier import Fourier

twopi = 2.0 * math.pi
t0 = np.datetime64("2003-01-01")

## read training file
z = zipfile.ZipFile('../train.csv.zip')
dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
df = pd.read_csv(z.open('train.csv'),
                 parse_dates=['Dates'],
                 date_parser=dateparse)

#crime_category = df['Category'] # list of crime types
#group = df.groupby('Category')
#freq = group.size()   # histogram of crime types
#cr_index = freq.index.values
#Nc = len(cr_index)    # number of crime types
#cr_a_index = pd.DataFrame(data = np.arange(Nc, dtype=np.int), index = cr_index)
#cr_a_index = cr_a_index[0] # this now holds the index for each crime type

MyF = Fourier(645.0, 20, 52.1775, 12, 1.0, 6, 1.0 / 7.0, 6, df)
MyF.compute()
MyF.graph()

## read testing file
#z = zipfile.ZipFile('../test.csv.zip')
#df = pd.read_csv(z.open('train.csv'), parse_dates=['Dates'], date_parser=dateparse)
示例#17
0
文件: retrieve.py 项目: fyang93/BURST
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--embed_dir',
                        type=str,
                        help="directory to embeddings")
    parser.add_argument('--results_dir', type=str, help="directory to results")
    parser.add_argument('--periods',
                        type=int,
                        nargs='+',
                        help="list of periods")
    parser.add_argument('--mean',
                        action='store_true',
                        help="use mean descriptor or not")
    parser.add_argument('--events',
                        type=int,
                        nargs='+',
                        default=range(1, 14),
                        help="list of events")
    args = parser.parse_args()
    use_mean = args.mean
    if not os.path.exists(args.results_dir):
        os.makedirs(args.results_dir)
    if not use_mean:
        periods = args.periods
        fourier = Fourier(periods)
        fourier_coefs = fourier.get_fourier_coefs()
        offset_mat_dicts = fourier.get_offset_mats()
    retrieve = Retrieve(args.embed_dir, args.results_dir)
    retrieve()
示例#18
0
print "%d crimes in total" % nd
tw = np.zeros(nd) # array of times in weeks 
ni = np.linspace(0, nd-1, nd, dtype=np.int)
mydate.index = ni
for i in range (0, nd):
   tw[i] = (mydate[i]-t0).total_seconds()
   tw[i] /= swk
tw = tw[tw <= 100.0] # only times in the first 100 weeks
tw = tw % 1
tw = tw * 7
nc = len(tw)
# Now get Fourier curve
nw = 336   
nb = 84
t = np.linspace(0.0, 1.0, nw)
MyF = Fourier(645.0, 16, 52.1775, 12, 1.0, 6, 1.0/7.0, 8, df, t0)
MyF.compute()
fv = np.empty(nw)
#fv.fill(2700.0)
for i in range(0, nw):
   fv[i] = 0.0
   for j in range(0, 50):
      fv[i] += MyF.f(t[i] + j * 2.0, 'DRUNKENNESS')
   fv[i] *= nc + 0.0  # nc - number of crimes
   fv[i] /= 50.0 * nb # nb - number of histogram bins
# Got Fourier curve
t = t * 7

plt.hist(tw, bins=nb) # 645 weeks but we only have alternating weeks
plt.plot(t, fv, linewidth=2.5)
plt.title("Drunkenness")
示例#19
0
df = pd.read_csv(z.open('train.csv'), parse_dates=['Dates'], date_parser=dateparse)
#vt = df[df.Category == 'VEHICLE THEFT'] # Vehicle Theft Data

mydate = df['Dates']
#print df.ix['VEHICLE THEFT']
nd = len(mydate)
print "%d crimes in total" % nd
tw = np.zeros(nd) # array of times in weeks 
for i in range(0, nd):
   tw[i] = (mydate[i]-t0).total_seconds()
   tw[i] /= swk
# Now get Fourier curve
nw = 323   
t = np.linspace(0.5, 644.5, nw)
#MyF = Fourier(645.0, 20, 52.1775, 12, 1.0, 6, 1.0/7.0, 6, df)
MyF = Fourier(645.0, 16, 52.1775, 12, 1.0, 0, 1.0/7.0, 0, df, t0)
MyF.compute()
fv = np.empty(nw)
#fv.fill(2700.0)
for i in range(0, nw):
   fv[i] = MyF.fa(t[i])
   fv[i] *= nd + 0.0
   fv[i] /= 322.0
# Got Fourier curve

plt.hist(tw, bins=322) # 645 weeks but we only have alternating weeks
plt.plot(t, fv, linewidth=2.5)
plt.title("Crime History")
plt.xlabel("Weeks")
plt.ylabel("Crimes per week")
plt.savefig('time-1.png')
示例#20
0
mydate = df['Dates']
nd = len(mydate)
print "%d crimes in total" % nd
tw = np.zeros(nd) # array of times in weeks 
for i in range(0, nd):
   tw[i] = (mydate[i]-t0).total_seconds()
   tw[i] /= swk
tw = tw[tw <= 1.0] # only times in the first week
tw = tw * 7
nc = len(tw)
# Now get Fourier curve
nw = 336   
nb = 84
t = np.linspace(0.0, 1.0, nw)
MyF = Fourier(645.0, 16, 52.1775, 12, 1.0, 6, 1.0/7.0, 8, df, t0)
MyF.compute()
fv = np.empty(nw)
#fv.fill(2700.0)
for i in range(0, nw):
   fv[i] = MyF.fa(t[i])
   fv[i] *= nc + 0.0
   fv[i] /= nb + 0.0
# Got Fourier curve
t = t * 7

plt.hist(tw, bins=nb) # 645 weeks but we only have alternating weeks
plt.plot(t, fv, linewidth=2.5)
plt.title("Crimes History")
plt.xlabel("Days")
plt.ylabel("Crimes per 2 hours")
示例#21
0
def create_arrows(ax, fourier):
	"""Create arrows from the coefficients of a Fourier series"""
	p = 0 + 0j
	arrows = []
	for c, n in zip(fourier.c, fourier.n):
		arrow = Arrow(ax, p.real, p.imag, n, c, fourier.L)
		arrows.append(arrow)
		p += c

	return arrows


if __name__ == "__main__":
	fig, axes = plt.subplots(1, 2)
	fig.set_size_inches(14, 7)

	ts = np.linspace(0, 6.28, 100)
	xs = 0.5 * np.cos(ts) + 0.5 * np.cos(2 * ts)
	ys = np.sin(ts) + 0.25

	points = np.array([ts, xs + 1j * ys]).T

	anims = []
	for n, ax in enumerate(axes):
		f = Fourier(points, N=n+1)
		anims.append(Animator(ax, f))
		ax.set_xlim((-2, 2))
		ax.set_ylim((-2, 2))
	group_anims = GroupAnimator(fig, anims, 6.28)
	plt.show()
示例#22
0
print "%d crimes in total" % nd
tw = np.zeros(nd)  # array of times in weeks
ni = np.linspace(0, nd - 1, nd, dtype=np.int)
mydate.index = ni
for i in range(0, nd):
    tw[i] = (mydate[i] - t0).total_seconds()
    tw[i] /= swk
tw = tw[tw <= 100.0]  # only times in the first 100 weeks
tw = tw % 1
tw = tw * 7
nc = len(tw)
# Now get Fourier curve
nw = 336
nb = 84
t = np.linspace(0.0, 1.0, nw)
MyF = Fourier(645.0, 16, 52.1775, 12, 1.0, 6, 1.0 / 7.0, 8, df, t0)
MyF.compute()
fv = np.empty(nw)
#fv.fill(2700.0)
for i in range(0, nw):
    fv[i] = 0.0
    for j in range(0, 50):
        fv[i] += MyF.f(t[i] + j * 2.0, 'DRUNKENNESS')
    fv[i] *= nc + 0.0  # nc - number of crimes
    fv[i] /= 50.0 * nb  # nb - number of histogram bins
# Got Fourier curve
t = t * 7

plt.hist(tw, bins=nb)  # 645 weeks but we only have alternating weeks
plt.plot(t, fv, linewidth=2.5)
plt.title("Drunkenness")