def step(taskName, parameterByName, folderStore, options): # Get windowGeoLength = parameterByName['window length in meters'] windowLabel = parameterByName['window label'] windowCenterPath = parameterByName['window center path'] imageName = parameterByName['image name'] imagePath = folderStore.getImagePath(imageName) imageInformation = folderStore.getImageInformation(imageName) # Prepare geoCenters, spatialReference = point_store.load(windowCenterPath) multispectralImage = imageInformation.getMultispectralImage() panchromaticImage = imageInformation.getPanchromaticImage() # Set targetWindowPath = folderStore.fillWindowPath(taskName) exampleInformation = {} # Extract if not options.is_test: dataset = window_process.extract(targetWindowPath, geoCenters, windowLabel, windowGeoLength, multispectralImage, panchromaticImage) exampleInformation['count'] = dataset.countSamples() # Save store.saveInformation(targetWindowPath, { 'windows': { 'window length in meters': windowGeoLength, 'spatial reference': spatialReference, }, 'parameters': { 'window label': windowLabel, 'window center path': windowCenterPath, 'image name': imageName, 'image path': imagePath, }, 'examples': exampleInformation, })
def step(taskName, parameterByName, folderStore, options): # Get patchCountPerRegion = parameterByName['patch count per region'] minimumPercentCorrect = parameterByName['minimum percent correct'] probabilityName = parameterByName['probability name'] probabilityPath = folderStore.getProbabilityPath(probabilityName) probabilityInformation = probability_store.Information(probabilityPath) imageName = probabilityInformation.getImageName() imageInformation = folderStore.getImageInformation(imageName) multispectralImage = imageInformation.getMultispectralImage() panchromaticImage = imageInformation.getPanchromaticImage() positiveLocationPath = imageInformation.getPositiveLocationPath() positiveGeoLocations, spatialReference = point_store.load(positiveLocationPath) # If the probability is from scanning the entire image, if not probabilityInformation.hasRegionName(): regionPath = folderStore.getRegionPath(parameterByName['region name']) # Get regionDataset else: regionPath = probabilityInformation.getRegionPath() regionInformation = region_store.Information(regionPath) regionFrames = regionInformation.getRegionDataset().getRegionFrames() regionCount = len(regionFrames) testRegionDataset = regionInformation.getTestRegionDataset() # Get windowPixelDimensions windowLengthInMeters = probabilityInformation.getWindowLengthInMeters() windowPixelDimensions = multispectralImage.convertGeoDimensionsToPixelDimensions(windowLengthInMeters, windowLengthInMeters) # Get classifierInformation classifierPath = probabilityInformation.getClassifierPath() classifierInformation = classifier.Information(classifierPath) # Record information = { 'patches': { 'patch count per region': patchCountPerRegion, 'minimum percent correct': minimumPercentCorrect, 'probability name': probabilityName, 'probability path': probabilityPath, }, 'windows': { 'window length in meters': windowLengthInMeters, 'spatial reference': spatialReference, }, } # Set targetPatchPath = folderStore.fillPatchPath(taskName) targetPatchFolderPath = os.path.dirname(targetPatchPath) if not options.is_test: # Make pixelPointMachines trainingPixelPointMachine = point_process.makePixelPointMachine(classifierInformation.getTrainingDataset().getGeoCenters(), windowLengthInMeters, multispectralImage) testPixelPointMachine = point_process.makePixelPointMachine(classifierInformation.getTestDataset().getGeoCenters(), windowLengthInMeters, multispectralImage) actualPixelPointMachine = point_process.makePixelPointMachine(positiveGeoLocations, windowLengthInMeters, multispectralImage) # Get badRegionFrames print 'Finding regions with poor performance...' isGoodWindow = actualPixelPointMachine.getPointsInsideWindow probabilityPacks = probability_store.load(probabilityPath) performances = analyzeRegions(regionFrames, probabilityPacks, isGoodWindow) badRegionFrames = [x[0] for x in itertools.izip(regionFrames, performances) if x[1] < minimumPercentCorrect] badRegionCount = len(badRegionFrames) # Save badRegionFrames badRegionDataset = region_store.save(targetPatchPath, badRegionFrames) badRegionDataset.saveShapefile(targetPatchPath, multispectralImage) # Make patch window centers print 'Sampling from regions with poor performance...' testPatchPixelCenters = [] trainingPatchPixelCenters = [] for regionFrame in badRegionFrames: # Load badCenters testRegionFrame = testRegionDataset.getFrameInsideFrame(regionFrame) regionalTrainingPixelCenters = trainingPixelPointMachine.getPointsInsideFrame(regionFrame) regionalTestPixelCenters = testPixelPointMachine.getPointsInsideFrame(testRegionFrame) badCenters = regionalTrainingPixelCenters + regionalTestPixelCenters # Generate patch window centers centerMachine = sample_process.CenterMachine(regionFrame, windowPixelDimensions, badCenters) for patchWindowPixelCenter in centerMachine.makeCenters(patchCountPerRegion): if point_process.isInsideRegion(patchWindowPixelCenter, testRegionFrame): testPatchPixelCenters.append(patchWindowPixelCenter) else: trainingPatchPixelCenters.append(patchWindowPixelCenter) # Define buildPatch = lambda makePath, pixelCenters: patch_process.buildPatch(makePath(targetPatchFolderPath), pixelCenters, actualPixelPointMachine, multispectralImage, panchromaticImage, windowLengthInMeters) # Produce training and test sets information['training set'] = buildPatch(sample_process.makeTrainingPath, trainingPatchPixelCenters).getStatistics() information['test set'] = buildPatch(sample_process.makeTestPath, testPatchPixelCenters).getStatistics() # Record information['performance'] = { 'bad region count': badRegionCount, 'region count': regionCount, 'percent correct': (regionCount - badRegionCount) / float(regionCount), } information['performance by region'] = dict(('%s %s %s %s' % x[0], x[1]) for x in itertools.izip(regionFrames, performances)) # Save store.saveInformation(targetPatchPath, information)
def sampleWindows(targetWindowPath, region, location, parameterByName, options=None): # Get parameters exampleCountPerRegion = parameterByName['example count per region'] multispectralPixelShiftValue = parameterByName['multispectral pixel shift value'] shiftCount = parameterByName['shift count'] # Prepare regionFrames regionSet = region.getDataset() # regionDataset = region_store.load(region.path) regionFrames = regionDataset.getRegionFrames() regionFrameCount = len(regionFrames) # Prepare counts testRegionSet = region.getTestDataset() # testRegionDataset = region_store.load(regionInformation.getTestRegionPath()) testFractionPerRegion = regionInformation.getTestFractionPerRegion() # Load imageDataset imagePath = folderStore.getImagePath(regionInformation.getImageName()) imageInformation = image_store.Information(imagePath) multispectralImage = image_store.load(imageInformation.getMultispectralImagePath()) panchromaticImage = image_store.load(imageInformation.getPanchromaticImagePath()) # Load locations positiveGeoLocations, spatialReference = point_store.load(imageInformation.getPositiveLocationPath()) # Convert windowLengthInMeters = regionInformation.getWindowLengthInMeters() windowPixelDimensions = multispectralImage.convertGeoDimensionsToPixelDimensions(windowLengthInMeters, windowLengthInMeters) positivePixels = multispectralImage.convertGeoLocationsToPixelLocations(positiveGeoLocations) # Place examples exampleMachine = region_process.ExampleMachine(positivePixels, exampleCountPerRegion, testFractionPerRegion, testRegionDataset, windowPixelDimensions, multispectralPixelShiftValue, shiftCount) examplePacks = [] if options and not options.is_test: print 'Placing examples in %s regions for "%s"...' % (regionFrameCount, taskName) for regionFrame in regionFrames: examplePacks.append(exampleMachine.placeInFrame(regionFrame)) exampleCount = len(examplePacks) if exampleCount % 10 == 0: view.printPercentUpdate(exampleCount, regionFrameCount) view.printPercentFinal(regionFrameCount) exampleInformation = {} trainingPaths = [] testPaths = [] # Set targetWindowFolderPath = os.path.dirname(targetWindowPath) if options and not options.is_test: # For each exampleName, for exampleName in examplePacks[0].keys(): # Convert examplePixelLocations = sum((x[exampleName] for x in examplePacks), []) exampleGeoLocations = multispectralImage.convertPixelLocationsToGeoLocations(examplePixelLocations) examplePath = os.path.join(targetWindowFolderPath, exampleName) exampleLabel = 1 if 'positive' in exampleName else 0 # Save point_store.save(examplePath, exampleGeoLocations, spatialReference) exampleInformation[exampleName + ' count'] = len(examplePixelLocations) # Extract print 'Extracting %s windows for %s...' % (len(examplePixelLocations), exampleName) window_process.extract(examplePath, exampleGeoLocations, exampleLabel, windowLengthInMeters, multispectralImage, panchromaticImage) (testPaths if 'test' in exampleName else trainingPaths).append(examplePath) # Record information = { 'windows': { 'window length in meters': windowLengthInMeters, 'spatial reference': spatialReference, }, 'regions': { 'name': regionName, 'path': regionPath, 'count': regionFrameCount, }, 'examples': exampleInformation, } # Combine if options and not options.is_test: information['training set'] = sample_process.combineDatasets(sample_process.makeTrainingPath(targetWindowFolderPath), trainingPaths).getStatistics() information['test set'] = sample_process.combineDatasets(sample_process.makeTestPath(targetWindowFolderPath), testPaths).getStatistics() # Save information store.saveInformation(targetWindowPath, information)