def term_acceptance_function(expansion_term):

	variables = expansion_term.get_active_variables()

	if not expansion_term.is_pure_type('strain')

	#remove all terms with in-plane strain variables in them - these are fixed to 0 for (100) epitaxy
	for variable in variables:
		if variable.type_string == 'strain' and variable.index in [0, 1, 5]:
			return False

	#assume no forces or stresses on the cell
	if expansion_term.order == 1: 
		return False

	#only expand to second order w.r.t. strain
	if expansion_term.is_pure_type('strain') and expansion_term.order > 2:
		return False

	#for perovskite structure under arbitrary homogeneous strain, displacement terms are centrosymmetric
	if expansion_term.is_centrosymmetric():
		return False

	#only go to fourth order in single variable dsiplacement terms - don't do fourth order cross terms
	if expansion_term.order == 4 and not expansion_term.has_single_variable():
		return False

	return True


taylor_expansion = TaylorExpansion(variables_list=variables, term_acceptance_function=term_acceptance_function)

print
print "Number of terms:", len(taylor_expansion)


print '\n\t\t',
print taylor_expansion
print '\n'*3




base_path = "./"


perturbation_magnitudes_dictionary = {'strain': 0.01, 'displacement': 0.2}


a = 3.79
Nx = 1
Ny = 1
Nz = 1

vasp_run_inputs_dictionary = {
	'kpoint_scheme': 'Monkhorst',
	'kpoint_subdivisions_list': [8, 8, 8],
	'encut': 900,
	'addgrid': True
}

relaxation_input_dictionary= {
    'external_relaxation_count': 3,
    'isif': [6],
    'kpoint_schemes_list': [vasp_run_inputs_dictionary['kpoint_scheme']],
    'kpoint_subdivisions_lists': [vasp_run_inputs_dictionary['kpoint_subdivisions_list']],
    'ediff': [0.00001, 1e-7, 1e-9],
    'encut': [vasp_run_inputs_dictionary['encut']],
    'submission_script_modification_keys_list': ['100'],
    'lwave': [True]
}


initial_structure=Perovskite(supercell_dimensions=[Nx, Ny, Nz], lattice=[[a*Nx, 0.0, 0.0], [0.0, a*Ny, 0.0], [0.0, 0.0, a*Nz*1.02]], species_list=['Sr', 'Ti', 'O'])


relaxation = VaspRelaxation(path=Path.join(base_path, 'relaxation'), initial_structure=initial_structure, input_dictionary=relaxation_input_dictionary)


if not relaxation.complete:
	relaxation.update()
else:
	
	relaxed_structure = relaxation.final_structure

	force_calculation_path = Path.join(base_path, 'dfpt_force_calculation')

	kpoints = Kpoints(scheme_string=vasp_run_inputs_dictionary['kpoint_scheme'], subdivisions_list=vasp_run_inputs_dictionary['kpoint_subdivisions_list'])
	incar = IncarMaker.get_dfpt_hessian_incar({'encut': vasp_run_inputs_dictionary['encut']})

	input_set = VaspInputSet(relaxed_structure, kpoints, incar, auto_change_lreal=False, auto_change_npar=False)

	dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

	if not dfpt_force_run.complete:
		dfpt_force_run.update()
	else:

		hessian = Hessian(dfpt_force_run.outcar)

		eigen_structure = EigenStructure(reference_structure=relaxed_structure, hessian=hessian)
		eigen_structure.print_eigen_components()



		de_path = Path.join(base_path, 'term_coefficient_calculations')
		derivative_evaluator = DerivativeEvaluator(path=de_path, reference_structure=relaxed_structure, hessian=hessian, taylor_expansion=taylor_expansion, 
			reference_completed_vasp_relaxation_run=relaxation, vasp_run_inputs_dictionary=vasp_run_inputs_dictionary, perturbation_magnitudes_dictionary=perturbation_magnitudes_dictionary)

		derivative_evaluator.update()

		print derivative_evaluator.taylor_expansion
示例#2
0
	force_calculation_path = Path.join(base_path, 'dfpt_force_calculation')

	kpoints = Kpoints(scheme_string=kpoint_scheme, subdivisions_list=kpoint_subdivisions_list)
	incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)
	input_set = VaspInputSet(relaxed_structure, kpoints, incar, auto_change_lreal=False, auto_change_npar=False)

	dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

	if not dfpt_force_run.complete:
		dfpt_force_run.update()


	else:

		hessian = Hessian(dfpt_force_run.outcar)
		#hessian.print_eigen_components()
		hessian.print_eigenvalues()




		guessed_minima_data_path = Path.join(base_path, 'guessed_chromosomes')
		minima_path = Path.join(base_path, 'minima_tests')

		if Path.exists(guessed_minima_data_path):

		    minima_file = File(guessed_minima_data_path)

		    eigen_chromosome_energy_pairs_list = [] #[[predicted_energy_difference_1, [e1, e2, e3, e4, ...]], [predicted_energy_difference_2, [e1, ...]]]
示例#3
0
            'kpoint_subdivisions_list'])
    incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)

    input_set = VaspInputSet(relaxed_structure,
                             kpoints,
                             incar,
                             auto_change_lreal=False,
                             auto_change_npar=False)

    dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

    if not dfpt_force_run.complete:
        dfpt_force_run.update()
    else:

        hessian = Hessian(dfpt_force_run.outcar)
        hessian.print_eigen_components()

        derivative_evaluator_list = []
        for i in range(len(displacement_magnitudes_list)):

            # perturbation_magnitudes_dictionary = {'strain': 0.01, 'displacement': displacement_magnitudes_list[i]}
            perturbation_magnitudes_dictionary = {
                'strain': 0.01,
                'displacement': displacement_magnitudes_list[i]
            }

            de_path = Path.join(
                base_path, 'term_coefficient_calculations_' +
                str(displacement_magnitudes_list[i]))
            derivative_evaluator = DerivativeEvaluator(
示例#4
0
Nz = 1

relax_input_dictionary = {
    'external_relaxation_count': 0,
    'kpoint_schemes_list': ['Monkhorst'],
    'kpoint_subdivisions_lists': [[6, 6, 6]],
    'submission_node_count_list': [1],
    'ediff': [0.000001],
    'encut': [800]
}

supercell_dimensions = [Nx, Ny, Nz]
base_path = './'

outcar = Outcar(Path.join(base_path, 'OUTCAR_small_refined'))
hessian = Hessian(outcar)

reference_structure = Perovskite(supercell_dimensions=[Nx, Ny, Nz],
                                 lattice=[[a * Nx, 0.0,
                                           0.0], [0.0, a * Ny, 0.0],
                                          [0.0, 0.0, a * Nz]],
                                 species_list=['Sr', 'Ti', 'O'])

# print eigen_structure
# print eigen_structure.eigen_components_list[component_index]
# eigen_structure.print_eigen_components()

component_indices = range(3 * reference_structure.site_count)

stored_energy = None
increment = 0.05
def run_misfit_strain(path, misfit_strain, input_dictionary,
                      initial_relaxation_input_dictionary, dfpt_incar_settings,
                      derivative_evaluation_vasp_run_inputs_dictionary,
                      minima_relaxation_input_dictionary,
                      epitaxial_relaxation_input_dictionary):

    Path.make(path)
    guessed_minima_data_path = Path.join(path, 'guessed_chromosomes')

    species_list = input_dictionary['species_list']
    reference_lattice_constant = input_dictionary['reference_lattice_constant']
    Nx = input_dictionary['supercell_dimensions_list'][0]
    Ny = input_dictionary['supercell_dimensions_list'][1]
    Nz = input_dictionary['supercell_dimensions_list'][2]
    displacement_finite_differences_step_size = input_dictionary[
        'displacement_finite_differences_step_size']
    perturbation_magnitudes_dictionary = input_dictionary[
        'perturbation_magnitudes_dictionary']

    a = reference_lattice_constant * (1.0 + misfit_strain)

    initial_structure = Perovskite(
        supercell_dimensions=[Nx, Ny, Nz],
        lattice=[[a * Nx, 0.0, 0.0], [0.0, a * Ny, 0.0],
                 [
                     0.0, 0.0, reference_lattice_constant * Nz *
                     (1.0 + 0.3 * (1.0 - (a / reference_lattice_constant)))
                 ]],
        species_list=species_list)
    relaxation = VaspRelaxation(
        path=Path.join(path, 'relaxation'),
        initial_structure=initial_structure,
        input_dictionary=initial_relaxation_input_dictionary)

    if not relaxation.complete:
        relaxation.update()
        return False

    relaxed_structure = relaxation.final_structure

    relaxed_structure_path = Path.join(path, 'output_relaxed_structure')
    relaxed_structure.to_poscar_file_path(relaxed_structure_path)

    force_calculation_path = Path.join(path, 'dfpt_force_calculation')

    kpoints = Kpoints(scheme_string=kpoint_scheme,
                      subdivisions_list=kpoint_subdivisions_list)
    incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)
    input_set = VaspInputSet(relaxed_structure,
                             kpoints,
                             incar,
                             auto_change_lreal=False,
                             auto_change_npar=False)
    input_set.incar['lepsilon'] = True

    dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

    if not dfpt_force_run.complete:
        dfpt_force_run.update()
        return False

    hessian = Hessian(dfpt_force_run.outcar)

    if input_dictionary['write_hessian_data']:
        hessian.print_eigenvalues_to_file(
            Path.join(path, 'output_eigen_values'))
        hessian.print_eigen_components_to_file(
            Path.join(path, 'output_eigen_components'))
        hessian.print_mode_effective_charge_vectors_to_file(
            Path.join(path, 'output_mode_effective_charge_vectors'),
            relaxed_structure)

        eigen_structure = EigenStructure(reference_structure=relaxed_structure,
                                         hessian=hessian)

        mode_structures_path = Path.join(path, 'mode_rendered_structures')
        Path.make(mode_structures_path)

        mode_charge_file = File(
            Path.join(path, 'output_mode_effective_charge_vectors'))

        sorted_eigen_pairs = hessian.get_sorted_hessian_eigen_pairs_list()
        for i, structure in enumerate(
                eigen_structure.get_mode_distorted_structures_list(
                    amplitude=0.6)):
            if i > 30:
                break
            structure.to_poscar_file_path(
                Path.join(
                    mode_structures_path, 'u' + str(i + 1) + '_' +
                    str(round(sorted_eigen_pairs[i].eigenvalue, 2)) + '.vasp'))

            structure.lattice = Lattice([[8.0, 0.0, 0.0], [0.0, 8.0, 0.0],
                                         [0.0, 0.0, 8.0]])

            mode_charge_file[i] += '    ' + structure.get_spacegroup_string(
                symprec=0.2) + '  ' + structure.get_spacegroup_string(
                    symprec=0.1) + '  ' + structure.get_spacegroup_string(
                        symprec=0.001)

        mode_charge_file.write_to_path()
    #sys.exit()

    ################################################### random structure searcher
    if True:
        rand_path = Path.join(path, 'random_trials')
        Path.make(rand_path)

        num_guesses = 1
        num_modes = 12
        max_amplitude = 0.6

        if misfit_strain == 0.02:
            eigen_structure = EigenStructure(
                reference_structure=relaxed_structure, hessian=hessian)

            for i in range(num_guesses):
                trial_path = Path.join(rand_path, str(i))

                if not Path.exists(trial_path):
                    initial_structure_trial = eigen_structure.get_random_structure(
                        mode_count_cutoff=num_modes,
                        max_amplitude=max_amplitude)
                    trial_relaxation = VaspRelaxation(
                        path=trial_path,
                        initial_structure=initial_structure_trial,
                        input_dictionary=minima_relaxation_input_dictionary)
                else:
                    trial_relaxation = VaspRelaxation(path=trial_path)

                print "Updating random trial relaxation at " + trial_relaxation.path + "  Status is " + trial_relaxation.get_status_string(
                )
                trial_relaxation.update()

                if trial_relaxation.complete:
                    print "Trial " + str(i)
                    print trial_relaxation.get_data_dictionary()

        return None
    ###################################################

    if not Path.exists(guessed_minima_data_path):
        variable_specialty_points_dictionary = input_dictionary[
            'variable_specialty_points_dictionary_set'][
                misfit_strain] if input_dictionary.has_key(
                    misfit_strain) else {}

        derivative_evaluation_path = Path.join(
            path, 'expansion_coefficient_calculations')
        derivative_evaluator = DerivativeEvaluator(
            path=derivative_evaluation_path,
            reference_structure=relaxed_structure,
            hessian=hessian,
            reference_completed_vasp_relaxation_run=relaxation,
            vasp_run_inputs_dictionary=
            derivative_evaluation_vasp_run_inputs_dictionary,
            perturbation_magnitudes_dictionary=
            perturbation_magnitudes_dictionary,
            displacement_finite_differences_step_size=
            displacement_finite_differences_step_size,
            status_file_path=Path.join(path, 'output_derivative_plot_data'),
            variable_specialty_points_dictionary=
            variable_specialty_points_dictionary,
            max_displacement_variables=input_dictionary[
                'max_displacement_variables'])

        derivative_evaluator.update()

    else:
        minima_path = Path.join(path, 'minima_relaxations')

        minima_relaxer = MinimaRelaxer(
            path=minima_path,
            reference_structure=relaxed_structure,
            reference_completed_vasp_relaxation_run=relaxation,
            hessian=hessian,
            vasp_relaxation_inputs_dictionary=
            minima_relaxation_input_dictionary,
            eigen_chromosome_energy_pairs_file_path=guessed_minima_data_path,
            log_base_path=path,
            max_minima=input_dictionary['max_minima'])

        minima_relaxer.update()
        minima_relaxer.print_status_to_file(
            Path.join(path, 'output_minima_relaxations_status'))

        if minima_relaxer.complete:
            print "Minima relaxer complete: sorting the relaxations to find the lowest energy structure."
            #minima_relaxer.print_selected_uniques_to_file(file_path=Path.join(path, 'output_selected_unique_minima_relaxations'))
            sorted_uniques = minima_relaxer.get_sorted_unique_relaxation_data_list(
            )

            return sorted_uniques
def run_misfit_strain(path, misfit_strain, input_dictionary,
                      initial_relaxation_input_dictionary, dfpt_incar_settings,
                      derivative_evaluation_vasp_run_inputs_dictionary,
                      minima_relaxation_input_dictionary,
                      epitaxial_relaxation_input_dictionary):

    Path.make(path)

    species_list = input_dictionary['species_list']
    reference_lattice_constant = input_dictionary['reference_lattice_constant']
    Nx = input_dictionary['supercell_dimensions_list'][0]
    Ny = input_dictionary['supercell_dimensions_list'][1]
    Nz = input_dictionary['supercell_dimensions_list'][2]
    displacement_finite_differrences_step_size = input_dictionary[
        'displacement_finite_differrences_step_size']
    perturbation_magnitudes_dictionary = input_dictionary[
        'perturbation_magnitudes_dictionary']

    a = reference_lattice_constant * (1.0 + misfit_strain)

    initial_structure = Perovskite(
        supercell_dimensions=[Nx, Ny, Nz],
        lattice=[[a * Nx, 0.0, 0.0], [0.0, a * Ny, 0.0],
                 [
                     0.0, 0.0, reference_lattice_constant * Nz *
                     (1.0 + 0.3 * (1.0 - (a / reference_lattice_constant)))
                 ]],
        species_list=species_list)
    relaxation = VaspRelaxation(
        path=Path.join(path, 'relaxation'),
        initial_structure=initial_structure,
        input_dictionary=initial_relaxation_input_dictionary)

    if not relaxation.complete:
        relaxation.update()
        return False

    relaxed_structure = relaxation.final_structure

    relaxed_structure_path = Path.join(path, 'output_relaxed_structure')
    relaxed_structure.to_poscar_file_path(relaxed_structure_path)

    force_calculation_path = Path.join(path, 'dfpt_force_calculation')

    kpoints = Kpoints(scheme_string=kpoint_scheme,
                      subdivisions_list=kpoint_subdivisions_list)
    incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)
    input_set = VaspInputSet(relaxed_structure,
                             kpoints,
                             incar,
                             auto_change_lreal=False,
                             auto_change_npar=False)

    dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

    if not dfpt_force_run.complete:
        dfpt_force_run.update()
        return False

    hessian = Hessian(dfpt_force_run.outcar)
    hessian.print_eigenvalues_to_file(Path.join(path, 'output_eigen_values'))
    hessian.print_eigen_components_to_file(
        Path.join(path, 'output_eigen_components'))

    variable_specialty_points_dictionary = input_dictionary[
        'variable_specialty_points_dictionary_set'][
            misfit_strain] if input_dictionary.has_key(misfit_strain) else {}

    derivative_evaluation_path = Path.join(
        path, 'expansion_coefficient_calculations')
    derivative_evaluator = DerivativeEvaluator(
        path=derivative_evaluation_path,
        reference_structure=relaxed_structure,
        hessian=hessian,
        reference_completed_vasp_relaxation_run=relaxation,
        vasp_run_inputs_dictionary=
        derivative_evaluation_vasp_run_inputs_dictionary,
        perturbation_magnitudes_dictionary=perturbation_magnitudes_dictionary,
        displacement_finite_differrences_step_size=
        displacement_finite_differrences_step_size,
        status_file_path=Path.join(path, 'output_derivative_plot_data'),
        variable_specialty_points_dictionary=
        variable_specialty_points_dictionary)
    derivative_evaluator.update()

    guessed_minima_data_path = Path.join(path, 'guessed_chromosomes')
    minima_path = Path.join(path, 'minima_relaxations')

    if Path.exists(guessed_minima_data_path):
        minima_relaxer = MinimaRelaxer(
            path=minima_path,
            reference_structure=relaxed_structure,
            reference_completed_vasp_relaxation_run=relaxation,
            hessian=hessian,
            vasp_relaxation_inputs_dictionary=
            minima_relaxation_input_dictionary,
            eigen_chromosome_energy_pairs_file_path=guessed_minima_data_path)

        minima_relaxer.update()
        minima_relaxer.print_status_to_file(
            Path.join(path, 'output_minima_relaxations_status'))

        if minima_relaxer.complete:
            minima_relaxer.print_selected_uniques_to_file(file_path=Path.join(
                path, 'output_selected_unique_minima_relaxations'))
            sorted_uniques = minima_relaxer.get_sorted_unique_relaxation_data_list(
            )

            return sorted_uniques
    'encut': 400,
    'ediff': 1e-4,
    'lreal': False,  #set based on system size if lreal key is not present,
    'addgrid': True,
    'nsw': 1,
    'npar': 'Remove',
}

dfpt_force_run = VaspCalculationGenerator(vasp_calculation_input_dictionary)

dfpt_force_run.update()

if not dfpt_force_run.complete:
    sys.exit()

hessian = Hessian(dfpt_force_run.outcar)

if input_dictionary['write_hessian_data']:
    hessian.print_eigenvalues_to_file(Path.join(path, 'output_eigen_values'))
    hessian.print_eigen_components_to_file(
        Path.join(path, 'output_eigen_components'))
    hessian.print_mode_effective_charge_vectors_to_file(
        Path.join(path, 'output_mode_effective_charge_vectors'),
        relaxed_structure)

    eigen_structure = EigenStructure(reference_structure=relaxed_structure,
                                     hessian=hessian)

    mode_structures_path = Path.join(path, 'mode_rendered_structures')
    Path.make(mode_structures_path)