示例#1
0
    def PyExec(self):
        k = self.getProperty("NumOfQs").value
        peak_radius = self.getProperty("PeakRadius").value
        background_radii = (self.getProperty("BackgroundInnerRadius").value,
                            self.getProperty("BackgroundOuterRadius").value)
        I_over_sigma = self.getProperty("IOverSigma").value
        cluster_threshold = self.getProperty("ClusterThreshold").value

        # if user did not specify the number of qs then
        # set the k value to None
        if k == -1:
            k = None

        md = self.getProperty("MDWorkspace").value
        nuclear = self.getProperty("NuclearPeaks").value
        sats = self.getProperty("SatellitePeaks").value

        nuclear_hkls = indexing.get_hkls(nuclear)
        sats_hkls = indexing.get_hkls(sats)

        qs = indexing.find_q_vectors(nuclear_hkls, sats_hkls)
        clusters, k = indexing.cluster_qs(qs, threshold=cluster_threshold, k=k)
        qs = indexing.average_clusters(qs, clusters)
        predicted_satellites = self.create_fractional_peaks_workspace(
            qs, nuclear)

        centroid_satellites = CentroidPeaksMD(
            InputWorkspace=md,
            PeaksWorkspace=predicted_satellites,
            PeakRadius=peak_radius,
            StoreInADS=False)
        satellites_int_spherical = IntegratePeaksMD(
            InputWorkspace=md,
            PeaksWorkspace=centroid_satellites,
            PeakRadius=peak_radius,
            BackgroundInnerRadius=background_radii[0],
            BackgroundOuterRadius=background_radii[1],
            IntegrateIfOnEdge=True,
            StoreInADS=False)
        satellites_int_spherical = FilterPeaks(satellites_int_spherical,
                                               FilterVariable="Intensity",
                                               FilterValue=0,
                                               Operator=">",
                                               StoreInADS=False)
        satellites_int_spherical = FilterPeaks(satellites_int_spherical,
                                               FilterVariable="Signal/Noise",
                                               FilterValue=I_over_sigma,
                                               Operator=">",
                                               StoreInADS=False)

        self.log().notice("Q vectors are: \n{}".format(qs))
        self.setProperty("OutputWorkspace", satellites_int_spherical)
示例#2
0
    def test_cluster_qs_with_auto_k(self):
        qs = np.array([
            [0, .1, .1],
            [0, .1, .1],
            [0, .0, .1],
            [0, .0, .1],
            [0, .1, .1],
        ])

        qs += np.random.random(qs.shape) * 0.01

        clusters, k = indexing.cluster_qs(qs, threshold=0.01)
        self.assertEqual(k, 2)
        npt.assert_array_equal(clusters, np.array([2, 2, 1, 1, 2]))
    def test_cluster_qs_with_auto_k(self):
        qs = np.array([
            [0, .1, .1],
            [0, .1, .1],
            [0, .0, .1],
            [0, .0, .1],
            [0, .1, .1],
        ])

        qs += np.random.random(qs.shape) * 0.01

        clusters, k = indexing.cluster_qs(qs, threshold=0.01)
        self.assertEqual(k, 2)
        npt.assert_array_equal(clusters, np.array([2, 2, 1, 1, 2]))
示例#4
0
    def test_cluster_qs_with_fixed_k(self):
        qs = np.array([
            [0, .1, .1],
            [0, .1, .1],
            [0, .0, .1],
            [0, .0, .1],
            [0, .1, .1],
        ])

        qs += np.random.random(qs.shape) * 0.01

        k = 2
        clusters, k = indexing.cluster_qs(qs, k)
        self.assertEqual(k, 2)
        npt.assert_array_equal(clusters, np.array([0, 0, 1, 1, 0]))
    def test_cluster_qs_with_fixed_k(self):
        qs = np.array([
            [0, .1, .1],
            [0, .1, .1],
            [0, .0, .1],
            [0, .0, .1],
            [0, .1, .1],
        ])

        qs += np.random.random(qs.shape) * 0.01

        k = 2
        clusters, k = indexing.cluster_qs(qs, k)
        self.assertEqual(k, 2)
        npt.assert_array_equal(clusters, np.array([0, 0, 1, 1, 0]))
示例#6
0
    def PyExec(self):
        tolerance = self.getProperty("Tolerance").value
        k = int(self.getProperty("NumOfQs").value)
        nuclear = self.getProperty("NuclearPeaks").value
        satellites = self.getProperty("SatellitePeaks").value
        cluster_threshold = self.getProperty("ClusterThreshold").value
        n_trunc_decimals = int(np.ceil(abs(np.log10(tolerance))))

        if nuclear.getNumberPeaks() == 0:
            raise RuntimeError(
                "The NuclearPeaks parameter must have at least one peak")

        if satellites.getNumberPeaks() == 0:
            raise RuntimeError(
                "The SatellitePeaks parameter must have at least one peak")

        nuclear_hkls = indexing.get_hkls(nuclear)
        sats_hkls = indexing.get_hkls(satellites)

        qs = indexing.find_q_vectors(nuclear_hkls, sats_hkls)
        self.log().notice("K value is {}".format(k))

        k = None if k == -1 else k
        clusters, k = indexing.cluster_qs(qs, k=k, threshold=cluster_threshold)

        qs = indexing.average_clusters(qs, clusters)
        qs = indexing.trunc_decimals(qs, n_trunc_decimals)
        qs = indexing.sort_vectors_by_norm(qs)

        self.log().notice("Q vectors are: \n{}".format(qs))

        indices = indexing.index_q_vectors(qs, tolerance)
        ndim = indices.shape[1] + 3

        hkls = indexing.find_nearest_integer_peaks(nuclear_hkls, sats_hkls)

        hklm = np.zeros((hkls.shape[0], ndim))
        hklm[:, :3] = np.round(hkls)

        raw_qs = hkls - sats_hkls
        peak_map = KDTree(qs)
        for i, q in enumerate(raw_qs):
            distance, index = peak_map.query(q, k=1)
            hklm[i, 3:] = indices[index]

        indexed = self.create_indexed_workspace(satellites, ndim, hklm)
        self.setProperty("OutputWorkspace", indexed)
    def PyExec(self):
        tolerance = self.getProperty("Tolerance").value
        k = int(self.getProperty("NumOfQs").value)
        nuclear = self.getProperty("NuclearPeaks").value
        satellites = self.getProperty("SatellitePeaks").value
        cluster_threshold = self.getProperty("ClusterThreshold").value
        n_trunc_decimals = int(np.ceil(abs(np.log10(tolerance))))

        if nuclear.getNumberPeaks() == 0:
            raise RuntimeError("The NuclearPeaks parameter must have at least one peak")

        if satellites.getNumberPeaks() == 0:
            raise RuntimeError("The SatellitePeaks parameter must have at least one peak")

        nuclear_hkls = indexing.get_hkls(nuclear)
        sats_hkls = indexing.get_hkls(satellites)

        qs = indexing.find_q_vectors(nuclear_hkls, sats_hkls)
        self.log().notice("K value is {}".format(k))

        k = None if k == -1 else k
        clusters, k = indexing.cluster_qs(qs, k=k, threshold=cluster_threshold)

        qs = indexing.average_clusters(qs, clusters)
        qs = indexing.trunc_decimals(qs, n_trunc_decimals)
        qs = indexing.sort_vectors_by_norm(qs)

        self.log().notice("Q vectors are: \n{}".format(qs))

        indices = indexing.index_q_vectors(qs, tolerance)
        ndim = indices.shape[1] + 3

        hkls = indexing.find_nearest_integer_peaks(nuclear_hkls, sats_hkls)

        hklm = np.zeros((hkls.shape[0], ndim))
        hklm[:, :3] = np.round(hkls)

        raw_qs = hkls - sats_hkls
        peak_map = KDTree(qs)
        for i, q in enumerate(raw_qs):
            distance, index = peak_map.query(q, k=1)
            hklm[i, 3:] = indices[index]

        indexed = self.create_indexed_workspace(satellites, ndim, hklm)
        self.setProperty("OutputWorkspace", indexed)