def run_simulations(self): for frag_model in self.fragmentation_models: pi, pi_b, pi_w = run_mspi_simulations(frag_model, number_of_processes = self._number_of_processes, number_of_replicates = self._number_of_simulations) pi_summary = stats.SampleSummarizer(pi) pi_b_summary = stats.SampleSummarizer(pi_b) self.pi_samples.append(pi_summary) self.pi_between_samples.append(pi_b_summary)
def test_init_with_samples(self): ss = stats.SampleSummarizer([1.0, 2.0, 3.0]) self.assertEqual(ss.minimum, 1.0) self.assertEqual(ss.maximum, 3.0) self.assertApproxEqual(ss.mean, 2.0, 1e-9) self.assertApproxEqual(ss.variance, 1.0, 1e-9) self.assertEqual(ss.std_deviation, math.sqrt(1.0), 1e-9) self.assertApproxEqual(ss.pop_variance, 2 / float(3), 1e-9)
def test_init(self): ss = stats.SampleSummarizer(tag='test') self.assertEqual(ss.tag, 'test') self.assertEqual(ss.minimum, None) self.assertEqual(ss.maximum, None) self.assertEqual(ss.mean, None) self.assertEqual(ss.variance, None) self.assertEqual(ss.std_deviation, None) self.assertEqual(ss.pop_variance, None)
def test_add_one_sample(self): ss = stats.SampleSummarizer(tag='test') ss.add_sample(1) self.assertEqual(ss.tag, 'test') self.assertEqual(ss.minimum, 1) self.assertEqual(ss.maximum, 1) self.assertApproxEqual(ss.mean, 1.0, 1e-9) self.assertEqual(ss.variance, float('inf')) self.assertEqual(ss.std_deviation, float('inf')) self.assertEqual(ss.pop_variance, 0) ss = stats.SampleSummarizer(tag='test') ss.add_sample(3.45) self.assertEqual(ss.tag, 'test') self.assertEqual(ss.minimum, 3.45) self.assertEqual(ss.maximum, 3.45) self.assertApproxEqual(ss.mean, 3.45, 1e-9) self.assertEqual(ss.variance, float('inf')) self.assertEqual(ss.std_deviation, float('inf')) self.assertEqual(ss.pop_variance, 0)