def execute(self): # methods print("[Case Recommender: Rating Prediction > ItemKNN Algorithm]\n") print("training data:: " + str(len(self.train_set['users'])) + " users and " + str(len( self.train_set['items'])) + " items and " + str(self.train_set['ni']) + " interactions") print("test data:: " + str(len(self.test_set['users'])) + " users and " + str(len(self.test_set['items'])) + " items and " + str(self.test_set['ni']) + " interactions") # training baselines bui self.fill_matrix() print("training time:: " + str(timed(self.train_baselines))) + " sec" self.compute_similarity() print("prediction_time:: " + str(timed(self.predict))) + " sec\n" self.evaluate(self.predictions)
def execute(self): print("[Case Recommender: Item Recommendation > UserKNN Algorithm]\n") print("training data:: " + str(len(self.train_set["map_user"])) + " users and " + str(len( self.train_set["map_item"])) + " items and " + str(self.train_set["number_interactions"]) + " interactions") if self.test_file is not None: test_set = ReadFile(self.test_file).return_matrix() print("test data:: " + str(len(test_set["map_user"])) + " users and " + str(len(test_set["map_item"])) + " items and " + str(test_set["number_interactions"]) + " interactions") del test_set print("training time:: " + str(timed(self.compute_similarity))) + " sec" print("prediction_time:: " + str(timed(self.predict))) + " sec\n" if self.test_file is not None: self.evaluate()
def execute(self): # methods print("[Case Recommender: Rating Prediction > Item Attribute KNN Algorithm]\n") print("training data:: " + str(len(self.train_set['users'])) + " users and " + str(len( self.train_set['items'])) + " items and " + str(self.train_set['ni']) + " interactions") print("test data:: " + str(len(self.test_set['users'])) + " users and " + str(len(self.test_set['items'])) + " items and " + str(self.test_set['ni']) + " interactions") # training baselines bui print("training time:: " + str(timed(self.train_baselines))) + " sec" if self.similarity_matrix_file is not None: print("compute similarity:: " + str(timed(self.read_matrix))) + " sec" else: print("compute similarity time:: " + str(timed(self.compute_similarity))) + " sec" print("prediction_time:: " + str(timed(self.predict))) + " sec\n" self.evaluate(self.predictions)
def execute(self): # methods print("[Case Recommender: Item Recommendation > BPR MF Algorithm]\n") print("training data:: " + str(self.number_users) + " users and " + str(self.number_items) + " items and " + str(self.train_set["number_interactions"]) + " interactions") if self.test_file is not None: test_set = ReadFile(self.test_file).return_matrix() print("test data:: " + str(len(test_set["map_user"])) + " users and " + str(len(test_set["map_item"])) + " items and " + str(test_set["number_interactions"]) + " interactions") del test_set self._create_factors() print("training time:: " + str(timed(self.train_model))) + " sec" print("prediction_time:: " + str(timed(self.predict))) + " sec\n" if self.test_file is not None: self.evaluate()
def execute(self): # methods print("[Case Recommender: Rating Prediction > User NSVD1]\n") print("training data:: " + str(len(self.train['users'])) + " users and " + str(len( self.train['items'])) + " items and " + str(self.train['ni']) + " interactions") print("test data:: " + str(len(self.test['users'])) + " users and " + str(len(self.test['items'])) + " items and " + str(self.test['ni']) + " interactions") print("metadata:: " + str(len(self.metadata['items'])) + " users and " + str(len(self.metadata['metadata'])) + " metadata and " + str(self.metadata['ni']) + " interactions") self._create_factors() if self.batch: print("training time:: " + str(timed(self.train_batch_model))) + " sec" else: print("training time:: " + str(timed(self.train_model))) + " sec" print("prediction_time:: " + str(timed(self.predict))) + " sec\n" self.evaluate(self.predictions)