示例#1
0
 def clusters(self,L,min_L=1):
     from math import sqrt
     from frange import frange
     res = []
     for y in frange(2,L+1.):
         for x in frange(y,L+1.):
             ll = sqrt(x*y)
             if (ll > (L-0.5) or abs(ll-(L-0.5))<1E-5) and (ll < L or abs(ll-L)<1E-5):
                 res.append((int(x),int(y)))
     return res
示例#2
0
def smartSweepInterval( ns2FileName, start, end, increment, args="", dropThreshold=0.10 ):
	"""Similar to sweepInterval(), this function executes ns2 a number of
	times, each time passing it the specified data value. However, if the
	drop ratio ever exceeds dropThreshold, this function returns the data
	collected so far. This is useful if you are searching for the maximum
	sustainable throughput, or something similar."""
	
	# We want to start from the LONGEST interval
	# which is the slowest sending rate
	if start < end:
		temp = end
		end = start
		start = temp
		increment = -increment
	
	assert( start > end )
	assert( increment < 0 )
	
	results = []
	for interval in frange.frange( start, end, increment ):
		
		l = [ interval ]
		l.extend( executeAndParse( "ns %s %s %f" % ( ns2FileName, args, interval ) ) )
		results.append( l )
		
		if drops > dropThreshold:
			break
	
	return results
示例#3
0
def test_slice_start_stop():
    r = frange(0, 1, 10)
    print(list(r))
    print("sliced [2:8] --", r[1:8])
    print(list(r[2:8]))
    assert len(r[2:8]) == 6
    assert list_close(r[2:8], list(r)[2:8])
示例#4
0
def test_slice_stop():
    r = frange(0, 1, 20)
    print(list(r))
    print("sliced [:8] --", r[:8])
    print(list(r[:8]))
    assert len(r[:8]) == 8
    assert list_close(r[:8], list(r)[:8])
示例#5
0
def test_frange_get_generator_nosteps():
    """
    Tests that for positive step size, with zero steps in interval, 
    frange's returned generator matches arange's, which should be empty.
    """
    np.testing.assert_allclose(list(frange(10, 0, 0.1).get_generator()), np.arange(10, 0, 0.1), rtol=1e-10)
    return None
示例#6
0
def trapz(infun, a, b, *args, **kwargs):
    """
    Compute the area under the curve defined by
    y = fun(x), for x between a and b

    :param fun: the function to evaluate
    :type fun: a function that takes a single parameter

    :param a: the start point for the integration
    :type a: a numeric value

    :param b: the end point for the integration
    :type b: a numeric value
    """

    # curry the input function
    def fun(x):
        return infun(x, *args, **kwargs)


    # compute the range
    n = 100  # hard code that for now




    #vals = frange(a, b, n)

    #next(vals)
    # s = sum([fun(next(vals), *args, **kwargs) for i in range(n - 1)])
    s = sum((fun(val) for val in frange(a, b, n)[1:-1]))
    s += (fun(a) + fun(b)) / 2
    s *= (b - a) / n

    return s
示例#7
0
def test_frange():
    '''
    tests the basics
    '''
    r = frange(10, 20, 100)
    assert r[0] == 10.0
    assert r[1] == 10.1
    assert r[100] == 20.0
示例#8
0
def test_frange_neg_index():
    '''
    tests the basics
    '''
    r = frange(10, 20, 100)
    assert r[-1] == 20.0
    assert r[-2] == 19.9
    assert r[-101] == 10.0
示例#9
0
def test_raise_zeroDivisionError():
    """
    Tests that when a zero step size is used frange raises a divide by zero error
    as numpy's arange function does.
    """
    with pytest.raises(ZeroDivisionError):
        t = frange(1, 0, 0)
    return None
示例#10
0
    def __init__(self, Omega0, Gamma0, deltaGamma, mass,
                 T0=300, q0=0, v0=0, alpha=0, beta=0,
                 TimeTuple=[0, 100e-6], dt=1e-9, seed=None):
        """
        Initialises the sde_solver instance.

        Parameters
        ----------
        Omega0 : float
            Trapping frequency
        Gamma0 : float
            Enviromental damping - in radians/s - appears as (-Gamma*v) term in the SDE
        deltaGamma : float
            damping due to other effects (e.g. feedback cooling) - in radians/s - appears as (-deltaGamma*q**2*v)*dt term in the SDE
        mass : float
            mass of nanoparticle (in Kg)
        T0 : float, optional
            Temperature of the environment, defaults to 300
        q0 : float, optional
            initial position, defaults to 0
        v0 : float, optional
            intial velocity, defaults to 0
        alpha : float
            prefactor multiplying the q**3 non-linearity term shows up as ([alpha*q]**3*dt) in the SDE
        beta : float
            prefactor multiplying the q**5 non-linearity term shows up as ([beta*q]**5*dt) in the SDE
        TimeTuple : tuple, optional
            tuple of start and stop time for simulation / solver
        dt : float, optional
            time interval for simulation / solver
        seed : float, optional
            random seed for generate_weiner_path, defaults to None
            i.e. no seeding of random numbers
        
        """
        self.k_B = Boltzmann # J/K
        self.tArray = np.arange(0, 500e-6, dt)
        self.q0 = q0
        self.v0 = v0
        self.Omega0 = Omega0
        self.Gamma0 = Gamma0
        self.deltaGamma = deltaGamma
        self.mass = mass
        self.T0 = T0
        self.alpha = alpha
        self.beta = beta
        self.TimeTuple = TimeTuple
        self.b_v = np.sqrt(2*self.Gamma0*self.k_B*self.T0/self.mass) # a constant
        self.dt = dt
        self.tArray = frange(TimeTuple[0], TimeTuple[1], dt)
        self.generate_weiner_path(seed)
        
        self.q = np.zeros(len(self.tArray)) # initialises position array, q
        self.v = np.zeros(len(self.tArray)) # initialises velocity array, v
        self.q[0] = self.q0 # sets initial position to q0
        self.v[0] = self.v0 # sets initial position to v0
        self.SqueezingPulseArray = np.ones(len(self.tArray)) # initialises squeezing pulse array such that there is no squeezing
        return None
示例#11
0
文件: seq.py 项目: akipta/hobbyutil
def FloatingPoint(n, m, inc, d):
    fmt = "%%.%dg" % d["-d"]
    for i in frange(n, m, inc, include_end=d["-e"]):
        if i <= float(m):
            if d["-s"]:
                out(sig(i), "", nl=d["-n"])
            else:
                out(fmt % i, "", nl=d["-n"])
    if not d["-n"]:
        out()
示例#12
0
def sweepInterval( ns2FileName, start, end, increment, args="", trimStart=5, trimEnd=5 ):
	"""Execute ns2 a number of times with a range of parameters, and
	return the aggregate results from parseAggregateStatistics as a 2D
	list. The start, end, and increment parameters are passed to frange()
	to generate the sequence of values. The command executed is:
	
	ns <ns2FileName> <args> <dataValue>"""
	
	results = []	
	for interval in frange.frange( start, end, increment ):
		l = [ interval ]
		l.extend( executeAndParse( "ns %s %s %f" % ( ns2FileName, args, interval ), trimStart, trimEnd ) )
		results.append( l )
	
	return results
示例#13
0
def main():
    win = GraphWin('Sinusoid', 300, 300)
    win.setCoords(0, 0, win.width, win.height)

    # rect = Rectangle(Point(200, 90), Point(220, 100))
    # rect.setFill("blue")
    # rect.draw(win)
    #
    # cir1 = Circle(Point(40, 100), 25)
    # cir1.setFill("yellow")
    # cir1.draw(win)
    #
    # cir2 = Circle(Point(150, 125), 25)
    # cir2.setFill("red")
    # cir2.draw(win)

    pt1 = Point(0, 150)
    pt1.draw(win)

    ln2 = Line(pt1, Point(300, 150))
    ln2.draw(win)

    # x=[1,2,3,4,5,6,7,8,9,10]


    t = 0.05
    amplitude = 10


    for x in frange.frange(0,10,t/2):

        y = amplitude * math.sin((2*math.pi)*x)

        pt1.move(x, y)
        time.sleep(t/2)

        if pt1.getX() >= win.width:
            promptClose(win, win.getWidth() / 2, 20)
            break
示例#14
0
    def __init__(self,
                 TimeTuple,
                 SampleFreq,
                 TrapFreqArray,
                 Gamma0,
                 mass,
                 ConvFactorArray,
                 NoiseStdDev,
                 T0=300.0,
                 deltaGammaArray=None,
                 dt=1e-9,
                 seed=None,
                 NPerSegmentPSD=1000000):
        """
        Parameters
        ----------
        TimeTuple : tuple, optional
            tuple of start and stop time for simulation / solver
        SampleFreq : float
            Sample freq to downsample data to (Hz)
        TrapFreqArray : ndarray
            Array of trap frequencies of Z, X and Y motion (Hz).
        Gamma0 : float
            Damping due to the enviroment (radians/second)
        mass : float
            mass of the nanoparticle (kg)
        ConvFactorArray : ndarray
            Conversion factors to use to go from motion in nms
            to signal in volts for each degree of freedom
        NoiseStdDev : float
            std deviation of white noise applied to particle signal
            after generation from SDE solving.
        T0 : float, optional
            Temperature of the environment
        deltaGammaArray : ndarray, optional
            array containing the additional damping on each degree of freedom 
            due to other effects (e.g. feedback cooling)
        dt : float, optional
            time step for SDE solver
        seed : float, optional
            random seed for generating the weiner paths for SDE solving
            defaults to None i.e. no seeding of random numbers
            sets the seed prior to initialising the SDE solvers such
            that the data is repeatable but that each solver uses
            different random numbers. No seed by default.
        NPerSegnmentPSD : int, optional
            number of points per segment to use in calculating the PSD


        """
        self.q0 = 0.0
        self.v0 = 0.0
        self.TimeTuple = (TimeTuple[0], TimeTuple[1])
        self.timeStart = TimeTuple[0]
        self.timeEnd = TimeTuple[1]
        self.SampleFreq = SampleFreq
        self.TrapFreqArray = _np.array(TrapFreqArray)
        self.Gamma0 = Gamma0
        if deltaGammaArray == None:
            self.deltaGammaArray = _np.zeros_like(TrapFreqArray)
        else:
            if len(deltaGammaArray) != len(TrapFreqArray):
                raise (
                    "deltaGammaArray should be the same length as TrapFreqArray"
                )
            self.deltaGammaArray = deltaGammaArray
        self.mass = mass
        self.ConvFactorArray = ConvFactorArray
        self.NoiseStdDev = NoiseStdDev
        self.T0 = T0
        self.dt = dt
        self.seed = seed
        dtSample = 1 / SampleFreq
        self.DownSampleAmount = round(dtSample / dt)
        self.timeStep = dtSample / dt
        if _np.isclose(dtSample / dt, self.DownSampleAmount,
                       atol=1e-6) == False:
            raise ValueError(
                "The sample rate {} has a time interval between samples of {}, this is not a multiple of the simualted time interval {}. dtSample/dt = {}"
                .format(SampleFreq, dtSample, dt, self.timeStep))
        self.generate_simulated_data(
        )  # solves SDE for each frequency and eta value specified
        # along requested time interval
        self.time = frange(TimeTuple[0], TimeTuple[1],
                           self.DownSampleAmount * dt)
        self.simtime = frange(TimeTuple[0], TimeTuple[1], dt)
        self.Noise = _np.random.normal(0, self.NoiseStdDev, len(self.time))
        self.voltage = _np.copy(self.Noise)
        self.TrueSignals = []
        for i, sdesolver in enumerate(self.sde_solvers):
            self.TrueSignals.append(_np.array([sdesolver.q, sdesolver.v]))
            self.voltage += ConvFactorArray[i] * sdesolver.q[::self.
                                                             DownSampleAmount]
        self.TrueSignals = _np.array(self.TrueSignals)
        self.get_PSD(NPerSegmentPSD)
        del (self.sde_solvers)
        return None
示例#15
0
    def getAtDim(self, dim):
        dimMin = self.independentVarDimensionLimits[dim].dimMin
        dimMax = self.independentVarDimensionLimits[dim].dimMax

        return fr.frange(dimMin, dimMax, self.stepSize)
示例#16
0
def test_full_slice():
    r = frange(10, 20, 100)
    assert r == r[:]
示例#17
0
 def draw(self,randcol="false"):
     
     #find greatest common denominator of r and R using Euclidian algorithm:
     gcd = euclidianGCD(self.r, self.R)
     #number of periods is the reduced numerator of the fraction r/R
     numPeriods = self.r/gcd
     numPetals = self.R/gcd
     #calculate constants for graphing
     print('Periods: ', numPeriods)
     print('Petals: ', numPetals)
     k = float(self.r)/self.R
     l = float(self.d)/self.r
     
     print('k=',self.r, '/',self.R, '=',k,' l=',self.d,'/',self.r,'=',l)
     
     #use the custom-made frange function to make a list of angles of given increment
     angleIncrement = 0.01 #the smaller angleIncrement, the more data points
     ptsPeriod = math.ceil(2*math.pi/angleIncrement)
     print("Points per Period: ", ptsPeriod)
     #frange function is an alternative to range(). The last argument specifies a decimal step
     angles = frange(0, 2*math.pi*numPeriods, angleIncrement)
     
     xCoordinates = []
     yCoordinates = []
     
     #calculate all the (x,y) points corresponding to parameters in the "angles" list
     for theta in angles: 
         thisX = self.R*((1-k)*math.cos(theta) + l*k*math.cos((1-k)/(k)*(theta)))
         thisY = self.R*((1-k)*math.sin(theta) + l*k*math.sin((1-k)/(k)*(theta)))                    
         xCoordinates.append(thisX)
         yCoordinates.append(thisY)
         
     print('Num data points: ', len(xCoordinates))
     
     t = self.t #for brevity in future references to the turtle
     screen= t.getscreen() #same as above
     screen.bgcolor("black")
     
     #name the canvas window
     title = "Spirograph with R= " + str(self.R) + ", r = "+str(self.r) + ", and d = " +str(self.d)
     screen.title(title)
     #for the first point, just move the pen without leaving trace
     t.up()
     t.goto(xCoordinates[0], yCoordinates[0])
     t.down()
     
     #speed up the drawing! update every 20 points. Change these parameters to vary speed
     screen.tracer(20)
     t.speed(6)
    
     
     if(randcol=="true"):
         randColors = True #if True, change up colors randomly with each period
     else:
         randColors = False
     t.color(self.color)
     sender=udp_client.SimpleUDPClient("127.0.0.1",4559)
     pointsCount = 0
     for each in range(len(xCoordinates)):
         t.goto(xCoordinates[each], yCoordinates[each])
         pointsCount = pointsCount + 1
         #additonal section to export x.y coords using OSC message
         if (pointsCount % (numPetals*2) == 0):
             sender.send_message('/xcoord',xCoordinates[each])
         if (pointsCount % (numPetals*4) ==0):
             sender.send_message('/ycoord',yCoordinates[each])            
         #end of additional section
         if (randColors):
             if (pointsCount % (ptsPeriod*4) == 0):
                red = random.random()
                green = random.random()
                blue = random.random()
                t.color(red, green, blue)
     t.hideturtle()
     print("Done drawing this curve")        
     time.sleep(2)
     sender.send_message("/finished","done")
示例#18
0
def test_zero_num_steps():
    with pytest.raises(ValueError):
        assert list(frange(3, 10, 0)) == []
示例#19
0
def test_frange_get_generator_negtaiveStepSize():
    """
    Tests that for negative step size frange's returned generator matches arange's
    """
    np.testing.assert_allclose(list(frange(10, 0, -0.1).get_generator()), np.arange(10, 0, -0.1), rtol=1e-10)
    return None
示例#20
0
def test_index_too_large():
    r = frange(100, 200, 10)
    with pytest.raises(IndexError):
        r[11]
    with pytest.raises(IndexError):
        r[-12]
示例#21
0
def test_slice_start_neg_end():
    assert (list(frange(
        0, 10, 10)[1:-1]) == [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
示例#22
0
def test_slice_start():
    r = frange(0, 1, 10)
    assert r[1:] == frange(0.1, 1, 9)
    assert r[2:] == frange(0.2, 1, 8)
示例#23
0
def test_slice_start_neg_end2():
    assert (list(frange(0, 10,
                        10)[2:-2]) == [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])
示例#24
0
def test_backwards():
    list_close(frange(1, 0, 10),
               [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])
示例#25
0
文件: seq.py 项目: akipta/hobbyutil
def Fractions(n, m, inc, d):
    for i in frange(n, m, inc, impl=R, return_type=R, 
                    include_end=d["-e"]):
        out(i, "", nl=d["-n"])
    if not d["-n"]:
        out()
示例#26
0
def test_length():
    assert len(frange(0, 100)) == 101
示例#27
0
def test_length():
    assert len(frange(0, 10, 0.1).get_array()) == 100
    return None
示例#28
0
y = []
z = []
m = []
r = []
Ntot = 0
for line in f:
    val = line.split()
    m.append(float(val[0]) * Msunh)
    x.append(float(val[1]) * Mpch)
    y.append(float(val[2]) * Mpch)
    z.append(float(val[3]) * Mpch)
    r.append(sqrt((x[Ntot] - xc) ** 2 + (y[Ntot] - yc) ** 2 + (z[Ntot] - zc) ** 2))
    Ntot = Ntot + 1

print ("increase radius until relaxation time is simulation time")
for rtmp in fr.frange(0.0, rvir, dr):
    # print "rtmp       = ",rtmp
    # determine N,M
    M = 0.0
    N = 0
    for i in range(0, Ntot):
        if r[i] < rtmp:
            M = M + m[i]
            N = N + 1
    if M <= 0.0:
        continue

    CL = log(rtmp / bmin)
    trelax = N * rtmp ** 1.5 / (8 * sqrt(G) * sqrt(M) * CL)

    if trelax > tsim:
示例#29
0
def test_frange_get_array_postiveStepSize():
    """
    Tests that for positive step size frange's returned array matches arange's
    """
    np.testing.assert_allclose(frange(0, 10, 0.1).get_array(), np.arange(0, 10, 0.1), rtol=1e-10)
    return None
示例#30
0
#!/usr/bin/python
# Generate absorbance data and save testing file for A->B
import random
from numpy import matrix, matlib
import csv
from frange import frange

t_0 = matrix(frange(-1e-6, 0, 5e-11)).transpose()
t_1 = matrix(frange(0, 1.9999500e-6, 5e-11)).transpose()
k = [2.2e7, 3.124e7] # rate constant

a_0 = 1e-3 # initial concentration of A
a_1 = 2e-3 # initial concentration of C
c = matlib.empty([t_1.size, 2])
c[:,0] = a_0 * matlib.exp(-k[0] * t_1)
c[:,1] = a_1 * matlib.exp(-k[1] * t_1)

# molar absorption of species A
a = matlib.empty([2, 1])
a[0,0] = 1e3
a[1,0] = 1e3

y_1 = matlib.dot(c, a)
y_1 = y_1.transpose().tolist()[0]
y_1 = map(lambda y: y + (0.04 * random.random() - 0.02), y_1)

t_0 = t_0.transpose().tolist()[0]
t_1 = t_1.transpose().tolist()[0]

fullLightVoltage = -0.0951192897786
y_1 = map(lambda y:fullLightVoltage*(10**-y), y_1)
示例#31
0
 def draw(self):
     #find greatest common denominator of r and R using Euclidian algorithm:
     gcd = euclidianGCD(self.r, self.R)
     #number of periods is the reduced numerator of the fraction r/R
     numPeriods = self.r/gcd
     numPetals = self.R/gcd
     #calculate constants for graphing
     print 'Periods: ', numPeriods
     print 'Petals: ', numPetals
     k = float(self.r)/self.R
     l = float(self.d)/self.r
     
     print 'k=',self.r, '/',self.R, '=',k,' l=',self.d,'/',self.r,'=',l
     
     #use the custom-made frange function to make a list of angles of given increment
     angleIncrement = 0.01 #the smaller angleIncrement, the more data points
     ptsPeriod = math.ceil(2*math.pi/angleIncrement)
     print "Points per Period: ", ptsPeriod
     #frange function is an alternative to range(). The last argument specifies a decimal step
     angles = frange(0, 2*math.pi*numPeriods, angleIncrement)
     
     xCoordinates = []
     yCoordinates = []
     
     #calculate all the (x,y) points corresponding to parameters in the "angles" list
     for theta in angles: 
         thisX = self.R*((1-k)*math.cos(theta) + l*k*math.cos((1-k)/(k)*(theta)))
         thisY = self.R*((1-k)*math.sin(theta) + l*k*math.sin((1-k)/(k)*(theta)))                    
         xCoordinates.append(thisX)
         yCoordinates.append(thisY)
         
     print 'Num data points: ', len(xCoordinates)
     
     t = self.t #for brevity in future references to the turtle
     screen= t.getscreen() #same as above
     
     
     #name the canvas window
     title = "Spirograph with R= " + str(self.R) + ", r = "+str(self.r) + ", and d = " +str(self.d)
     screen.title(title)
     #for the first point, just move the pen without leaving trace
     t.up()
     t.goto(xCoordinates[0], yCoordinates[0])
     t.down()
     
     #speed up the drawing! update every 20 points. Change these parameters to vary speed
     screen.tracer(20)
     t.speed(6)
    
     
     randColors = False #if True, change up colors randomly with each period
     t.color(self.color)
     pointsCount = 0
     for each in range(len(xCoordinates)):
         t.goto(xCoordinates[each], yCoordinates[each])
         pointsCount = pointsCount + 1            
         if (randColors):
             if (pointsCount % ptsPeriod == 0):
                red = random.random()
                green = random.random()
                blue = random.random()
                t.color(red, green, blue)
     print "Done drawing this curve"        
     t.hideturtle()
示例#32
0
文件: seq.py 项目: akipta/hobbyutil
def Integers(n, m, inc, d):
    for i in frange(n, m, inc, return_type=int, include_end=d["-e"]):
        if i <= int(m):
            out(i, "", nl=d["-n"])
    if not d["-n"]:
        out()
示例#33
0
def test_start_stop_same():
    with pytest.raises(ValueError):
        assert list(frange(3, 3)) == []
示例#34
0
    def getAtDim(self, dim):
        dimMin = self.independentVarDimensionLimits[dim].dimMin
        dimMax = self.independentVarDimensionLimits[dim].dimMax

        return fr.frange(dimMin, dimMax, self.stepSize)
示例#35
0
文件: sp1.py 项目: p137/MicroMagnum
#!/usr/bin/python
from magnum import *
from frange import frange
from math import cos, sin, pi

mesh = RectangularMesh((500,250,1), (5e-9, 5e-9, 20e-9))
Py = Material.Py(k_uni=5e2, axis1=(1,0,0))
world = World(mesh, Body("square", Py, Everywhere()))

solver = create_solver(world, [StrayField, ExchangeField, AnisotropyField, ExternalField], log=True)

# Create initial state
solver.state.M = (8e5, 0, 0)

# Perform hysteresis
H_range = list(frange(+50e-3, -50e-3, -5e-3)) + list(frange(-50e-3, +50e-3, 5e-3))
for tmp in H_range:
  H = (tmp/MU0 * cos(pi/180), tmp/MU0 * sin(pi/180), 0) # in A/m
  print(H)

  solver.state.H_offs = H
  solver.relax(1.0)